Uncertainty in Computational Intelligence-Based Decision Making: A volume in Advanced Studies in Complex Systems

dc.authorscopusid59352444200
dc.authorscopusid23028598900
dc.authorscopusid9279071000
dc.authorscopusid7005872966
dc.contributor.authorAhmadian, A.
dc.contributor.authorSalahshour, S.
dc.contributor.authorBalas, V.E.
dc.contributor.authorBaleanu, D.
dc.date.accessioned2024-12-15T15:41:18Z
dc.date.available2024-12-15T15:41:18Z
dc.date.issued2024
dc.departmentOkan Universityen_US
dc.department-tempAhmadian A., Decision Lab, Mediterranea University of Reggio Calabria, Reggio Calabria, Italy; Salahshour S., Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkey; Balas V.E., Petroleum-Gas University of Ploiesti, B-dul Bucharest, Ploiesti, Romania; Baleanu D., Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanonen_US
dc.description.abstractUncertainty in Computational Intelligence-Based Decision-Making focuses on techniques for reasoning and decision-making under uncertainty that are used to solve issues in artificial intelligence (AI). It covers a wide range of subjects, including knowledge acquisition and automated model construction, pattern recognition, machine learning, natural language processing, decision analysis, and decision support systems, among others. The first chapter of this book provides a thorough introduction to the topics of causation in Bayesian belief networks, applications of uncertainty, automated model construction and learning, graphic models for inference and decision making, and qualitative reasoning. The following chapters examine the fundamental models of computational techniques, computational modeling of biological and natural intelligent systems, including swarm intelligence, fuzzy systems, artificial neutral networks, artificial immune systems, and evolutionary computation. They also examine decision making and analysis, expert systems, and robotics in the context of artificial intelligence and computer science. © 2025 Elsevier Inc. All rights are reserved including those for text and data mining AI training and similar technologies.en_US
dc.identifier.citation0
dc.identifier.doi10.1016/C2022-0-03054-3
dc.identifier.endpage322en_US
dc.identifier.isbn978-044321475-2
dc.identifier.isbn978-044321476-9
dc.identifier.scopus2-s2.0-85208910652
dc.identifier.scopusqualityN/A
dc.identifier.startpage1en_US
dc.identifier.urihttps://doi.org/10.1016/C2022-0-03054-3
dc.identifier.urihttps://hdl.handle.net/20.500.14517/7540
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofUncertainty in Computational Intelligence-Based Decision Making: A volume in Advanced Studies in Complex Systemsen_US
dc.relation.publicationcategoryKitap - Uluslararasıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject[No Keyword Available]en_US
dc.titleUncertainty in Computational Intelligence-Based Decision Making: A volume in Advanced Studies in Complex Systemsen_US
dc.typeBooken_US
dspace.entity.typePublication

Files