Prediction of Short Term Traffic Speeds Using Deep Learning Models

dc.authorscopusid58572595000
dc.authorscopusid55539064100
dc.contributor.authorAlp, S.
dc.contributor.authorDündar, S.
dc.contributor.otherİnşaat Mühendisliği / Civil Engineering
dc.date.accessioned2025-01-15T21:48:28Z
dc.date.available2025-01-15T21:48:28Z
dc.date.issued2024
dc.departmentOkan Universityen_US
dc.department-tempAlp S., Dept. of Electrical and Electronic Engineering, Istanbul Okan University, Istanbul, Turkey; Dündar S., Dept. of Civil Engineering, Istanbul Okan University, Istanbul, Turkeyen_US
dc.descriptionIEEE SMC; IEEE Turkiye Sectionen_US
dc.description.abstractIn this study, real-time traffic forecasting was conducted using traffic speed data obtained from Bluetooth sensors located in the city of Vigo, Spain. For this purpose, average speed data recorded at fifteen-minute intervals from five different sensors in the city since 2014 were used. Using past average speed values in a time series format as inputs, various deep learning methods were applied to predict traffic speed data for the next fifteen minutes. The Long Short-Term Memory (LSTM) method achieved the highest performance in traffic forecasting. Incorporating additional factors such as time, weather conditions, and environmental factors into the models, along with time-series traffic volumes, could further enhance the performance of near-future traffic forecasting. © 2024 IEEE.en_US
dc.description.sponsorshipEuropean Commission, ECen_US
dc.identifier.citationcount0
dc.identifier.doi10.1109/ASYU62119.2024.10757118
dc.identifier.isbn979-835037943-3
dc.identifier.scopus2-s2.0-85213336647
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://doi.org/10.1109/ASYU62119.2024.10757118
dc.identifier.urihttps://hdl.handle.net/20.500.14517/7599
dc.identifier.wosqualityN/A
dc.institutionauthorAlp, Sina
dc.institutionauthorDündar, Selim
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2024 Innovations in Intelligent Systems and Applications Conference, ASYU 2024 -- 2024 Innovations in Intelligent Systems and Applications Conference, ASYU 2024 -- 16 October 2024 through 18 October 2024 -- Ankara -- 204562en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.scopus.citedbyCount0
dc.subjectDeep Learningen_US
dc.subjectLong Short Term Memoryen_US
dc.subjectTraffic Predictionen_US
dc.titlePrediction of Short Term Traffic Speeds Using Deep Learning Modelsen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublication2b08ba15-c754-4a6c-8e11-5d6d4aa08301
relation.isAuthorOfPublication52fffa12-457c-4662-8e87-9cd26b575049
relation.isAuthorOfPublication.latestForDiscovery2b08ba15-c754-4a6c-8e11-5d6d4aa08301
relation.isOrgUnitOfPublication43a00f20-ca47-4515-b3a3-db2c86320ff6
relation.isOrgUnitOfPublication.latestForDiscovery43a00f20-ca47-4515-b3a3-db2c86320ff6

Files