Hyperspectral image classification with convolutional networks trained with self-dual attribute profiles;

dc.authorscopusid57195216873
dc.authorscopusid23396161700
dc.contributor.authorKoc,S.G.
dc.contributor.authorAptoula,E.
dc.date.accessioned2024-05-25T12:32:18Z
dc.date.available2024-05-25T12:32:18Z
dc.date.issued2017
dc.departmentOkan Universityen_US
dc.department-tempKoc S.G., Okan Üniversitesi, Mekatronik Mühendisliǧi Bölümü, Istanbul, Turkey; Aptoula E., Gebze Teknik Üniversitesi, Bilişim Teknolojileri Enstitüsü, Kocaeli, Turkeyen_US
dc.description.abstractAttribute profiles are widely regarded among the most prominent spectral-spatial pixel description methods, providing high performance at a low computational cost. Following their success with computer vision applications, deep learning methods on the other hand are also being rapidly deployed and adapted into the remote sensing image analysis domain, where they already provide competitive description performances. The combination of attribute profiles with convolutional neural networks has recently taken place, showing that these powerful approaches can collaborate. In this paper we explore that direction one step further, by first feeding a convolutional neural network self-dual attribute profiles stacked as a tensor, and then by harvesting the ultimate layer's features for a supervised classification. Our preliminary experiments indicate that this approach leads to a performance improvement. © 2017 IEEE.en_US
dc.identifier.citation4
dc.identifier.doi10.1109/SIU.2017.7960208
dc.identifier.isbn978-150906494-6
dc.identifier.scopus2-s2.0-85026286364
dc.identifier.urihttps://doi.org/10.1109/SIU.2017.7960208
dc.identifier.urihttps://hdl.handle.net/20.500.14517/2372
dc.language.isotr
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2017 25th Signal Processing and Communications Applications Conference, SIU 2017 -- 25th Signal Processing and Communications Applications Conference, SIU 2017 -- 15 May 2017 through 18 May 2017 -- Antalya -- 128703en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectattribute profilesen_US
dc.subjectconvolutional neural networksen_US
dc.subjecthyperspectral imagesen_US
dc.subjectpixel classificationen_US
dc.subjecttree of shapesen_US
dc.titleHyperspectral image classification with convolutional networks trained with self-dual attribute profiles;en_US
dc.title.alternativeÖz-ikili Öznitelik profilleri ile eǧitilmiş evrişimsel sinir aǧlari ile hiperspektral goruntu siniflandirmaen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files