Distributed Cooperative and Noncooperative Joint Power and Beamforming Adaptation Game for MIMO Sensor Network

dc.authorscopusid57217847901
dc.authorscopusid35612536500
dc.authorscopusid6602863624
dc.contributor.authorKhairullah,A.K.
dc.contributor.authorKıvanç Türeli, Didem
dc.contributor.authorKivanc,D.
dc.contributor.otherMekatronik / Mechatronics
dc.date.accessioned2024-05-25T12:34:00Z
dc.date.available2024-05-25T12:34:00Z
dc.date.issued2020
dc.departmentOkan Universityen_US
dc.department-tempKhairullah A.K., Yildiz Technical University, Istanbul, Turkey; Tureli U., Yildiz Technical University, Istanbul, Turkey; Kivanc D., Istanbul Okan University, Istanbul, Turkeyen_US
dc.description.abstractDistributed Joint beamforming and power adaptation algorithms are of interest for MIMO ad hoc networks. Cooperative and non-cooperative games have been presented to decrease interference (mutual) at each sensor node, under receiver signal-to-interference and noise (SINR) constraints. In reduced feedback algorithms, the optimum transmitter node beamformer is selected from a predefined codebook. This paper introduces a cooperative optimal beamformer selection algorithm to minimize the total power consumption for cluster-based network topology under different minimum SINR constraints. The algorithm reduces overhead incurred by 48% and 10% while increasing the convergence rate to the steady-state allocation by 17% and 9% for the cooperative and non-cooperative beamformer selection games, respectively. Simulation results verify the proposed theoretical analysis, and demonstrate the performance of the Enhanced Co-Operative Power Minimization Algorithm (ECOPMA), Reinforcement Learning based Power allocation and Beamformer Algorithm (RLPBA) for the non-cooperative game [1], with state of the art methods and centralized (optimal) solutions as a fair benchmark. © 2020 IEEE.en_US
dc.identifier.citation0
dc.identifier.doi10.1109/IT-ELA50150.2020.9253098
dc.identifier.endpage131en_US
dc.identifier.isbn978-172818233-9
dc.identifier.scopus2-s2.0-85097780799
dc.identifier.startpage127en_US
dc.identifier.urihttps://doi.org/10.1109/IT-ELA50150.2020.9253098
dc.identifier.urihttps://hdl.handle.net/20.500.14517/2515
dc.institutionauthorKıvanç Türeli, Didem
dc.institutionauthorKivanc D.
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofProceedings of 2020 1st Information Technology to Enhance E-Learning and other Application Conference, IT-ELA 2020 -- 1st International Conference Information Technology to Enhance E-Learning and other Application, IT-ELA 2020 -- 12 July 2020 through 13 July 2020 -- Baghdad -- 164981en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBeamformingen_US
dc.subjectMIMO Ad hoc networken_US
dc.subjectOverhead Rateen_US
dc.subjectPotential Gameen_US
dc.subjectReinforcement Learningen_US
dc.subjectSINRen_US
dc.titleDistributed Cooperative and Noncooperative Joint Power and Beamforming Adaptation Game for MIMO Sensor Networken_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublication80d0bccb-8a21-471f-ab8a-c05a459ff550
relation.isAuthorOfPublication.latestForDiscovery80d0bccb-8a21-471f-ab8a-c05a459ff550
relation.isOrgUnitOfPublication6f670c04-4307-4514-b707-73e188cd08bb
relation.isOrgUnitOfPublication.latestForDiscovery6f670c04-4307-4514-b707-73e188cd08bb

Files