Analysis of a Normalized Structure of a Complex Fractal-Fractional Integral Transform Using Special Functions

dc.authoridSalahshour, Soheil/0000-0003-1390-3551
dc.authoridAgnes Orsolya, Pall-Szabo/0000-0003-3469-3362
dc.authoridIbrahim, Rabha W./0000-0001-9341-025X
dc.authorwosidAgnes Orsolya, Pall-Szabo/H-4327-2017
dc.authorwosidIbrahim, Rabha W./D-3312-2017
dc.contributor.authorIbrahim, Rabha W.
dc.contributor.authorSalahshour, Soheil
dc.contributor.authorPall-szabo, Agnes Orsolya
dc.date.accessioned2024-10-15T20:20:52Z
dc.date.available2024-10-15T20:20:52Z
dc.date.issued2024
dc.departmentOkan Universityen_US
dc.department-temp[Ibrahim, Rabha W.; Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Adv Comp Lab, TR-34959 Istanbul, Turkiye; [Ibrahim, Rabha W.] Near East Univ, Math Res Ctr, Dept Math, Near East Blvd,Mersin 10, TR-99138 Nicosia, Turkiye; [Ibrahim, Rabha W.] Al Ayen Univ, Sci Res Ctr, Informat & Commun Technol Res Grp, Nasiriyah 64001, Iraq; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, TR-34349 Istanbul, Turkiye; [Salahshour, Soheil] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut 1102, Lebanon; [Pall-szabo, Agnes Orsolya] Babes Bolyai Univ, Fac Econ & Business Adm, Dept Stat Forecasts Math, Cluj Napoca 400084, Romaniaen_US
dc.descriptionSalahshour, Soheil/0000-0003-1390-3551; Agnes Orsolya, Pall-Szabo/0000-0003-3469-3362; Ibrahim, Rabha W./0000-0001-9341-025Xen_US
dc.description.abstractBy using the most generalized gamma function (parametric gamma function, or p-gamma function), we present the most generalized Rabotnov function, called the p-Rabotnov function. Consequently, new fractal-fractional differential and integral operators of a complex variable in an open unit disk are defined and investigated analytically and geometrically. We address some inequalities involving the generalized fractal-fractional integral operator in some spaces of analytic functions. A novel complex fractal-fractional integral transform (CFFIT) is presented. A normalization of the proposed CFFIT is observed in the open unit disk. Examples are illustrated for power series of analytic functions.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citation0
dc.identifier.doi10.3390/axioms13080522
dc.identifier.issn2075-1680
dc.identifier.issue8en_US
dc.identifier.urihttps://doi.org/10.3390/axioms13080522
dc.identifier.urihttps://hdl.handle.net/20.500.14517/6587
dc.identifier.volume13en_US
dc.identifier.wosWOS:001305164200001
dc.identifier.wosqualityQ2
dc.institutionauthorSalahshour, Soheıl
dc.institutionauthorSalahshour, Soheıl
dc.language.isoen
dc.publisherMdpien_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectfractional calculusen_US
dc.subjectfractal calculusen_US
dc.subjectfractional difference operatoren_US
dc.subjectfractal-fractional differential operatoren_US
dc.subjectfractal-fractional calculusen_US
dc.subjectcomplex transformen_US
dc.subjectsubordination and superordinationen_US
dc.titleAnalysis of a Normalized Structure of a Complex Fractal-Fractional Integral Transform Using Special Functionsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf5ba517c-75fb-4260-af62-01c5f5912f3d
relation.isAuthorOfPublication.latestForDiscoveryf5ba517c-75fb-4260-af62-01c5f5912f3d

Files