Analysis of a Normalized Structure of a Complex Fractal-Fractional Integral Transform Using Special Functions
dc.authorid | Salahshour, Soheil/0000-0003-1390-3551 | |
dc.authorid | Agnes Orsolya, Pall-Szabo/0000-0003-3469-3362 | |
dc.authorid | Ibrahim, Rabha W./0000-0001-9341-025X | |
dc.authorwosid | Agnes Orsolya, Pall-Szabo/H-4327-2017 | |
dc.authorwosid | Ibrahim, Rabha W./D-3312-2017 | |
dc.contributor.author | Ibrahim, Rabha W. | |
dc.contributor.author | Salahshour, Soheil | |
dc.contributor.author | Pall-szabo, Agnes Orsolya | |
dc.date.accessioned | 2024-10-15T20:20:52Z | |
dc.date.available | 2024-10-15T20:20:52Z | |
dc.date.issued | 2024 | |
dc.department | Okan University | en_US |
dc.department-temp | [Ibrahim, Rabha W.; Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Adv Comp Lab, TR-34959 Istanbul, Turkiye; [Ibrahim, Rabha W.] Near East Univ, Math Res Ctr, Dept Math, Near East Blvd,Mersin 10, TR-99138 Nicosia, Turkiye; [Ibrahim, Rabha W.] Al Ayen Univ, Sci Res Ctr, Informat & Commun Technol Res Grp, Nasiriyah 64001, Iraq; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, TR-34349 Istanbul, Turkiye; [Salahshour, Soheil] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut 1102, Lebanon; [Pall-szabo, Agnes Orsolya] Babes Bolyai Univ, Fac Econ & Business Adm, Dept Stat Forecasts Math, Cluj Napoca 400084, Romania | en_US |
dc.description | Salahshour, Soheil/0000-0003-1390-3551; Agnes Orsolya, Pall-Szabo/0000-0003-3469-3362; Ibrahim, Rabha W./0000-0001-9341-025X | en_US |
dc.description.abstract | By using the most generalized gamma function (parametric gamma function, or p-gamma function), we present the most generalized Rabotnov function, called the p-Rabotnov function. Consequently, new fractal-fractional differential and integral operators of a complex variable in an open unit disk are defined and investigated analytically and geometrically. We address some inequalities involving the generalized fractal-fractional integral operator in some spaces of analytic functions. A novel complex fractal-fractional integral transform (CFFIT) is presented. A normalization of the proposed CFFIT is observed in the open unit disk. Examples are illustrated for power series of analytic functions. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | 0 | |
dc.identifier.doi | 10.3390/axioms13080522 | |
dc.identifier.issn | 2075-1680 | |
dc.identifier.issue | 8 | en_US |
dc.identifier.uri | https://doi.org/10.3390/axioms13080522 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14517/6587 | |
dc.identifier.volume | 13 | en_US |
dc.identifier.wos | WOS:001305164200001 | |
dc.identifier.wosquality | Q2 | |
dc.institutionauthor | Salahshour, Soheıl | |
dc.institutionauthor | Salahshour, Soheıl | |
dc.language.iso | en | |
dc.publisher | Mdpi | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | fractional calculus | en_US |
dc.subject | fractal calculus | en_US |
dc.subject | fractional difference operator | en_US |
dc.subject | fractal-fractional differential operator | en_US |
dc.subject | fractal-fractional calculus | en_US |
dc.subject | complex transform | en_US |
dc.subject | subordination and superordination | en_US |
dc.title | Analysis of a Normalized Structure of a Complex Fractal-Fractional Integral Transform Using Special Functions | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f5ba517c-75fb-4260-af62-01c5f5912f3d | |
relation.isAuthorOfPublication.latestForDiscovery | f5ba517c-75fb-4260-af62-01c5f5912f3d |