Rejection Threshold Optimization using 3D ROC Curves: Novel Findings on Biomedical Datasets

dc.contributor.authorŞengül, Yasemin Atılgan
dc.contributor.authorUyar, Aslı
dc.contributor.otherBilgisayar Mühendisliği / Computer Engineering
dc.date.accessioned2024-11-15T19:43:16Z
dc.date.available2024-11-15T19:43:16Z
dc.date.issued2021
dc.departmentOkan Universityen_US
dc.department-tempDOĞUŞ ÜNİVERSİTESİ,İSTANBUL OKAN ÜNİVERSİTESİen_US
dc.description.abstractReject option is introduced in classification tasks to prevent potential misclassifications. Although optimization of error-rejecttrade-off has been widely investigated, it is shown that error rate itself is not an appropriate performance measure, when misclassificationcosts are unequal or class distributions are imbalanced. ROC analysis is proposed as an alternative approach to performance evaluation interms of true positives (TP) and false positives (FP). Considering classification with reject option, we need to represent the tradeoff betweenTP, FP and rejection rates. In this paper, we propose 3D ROC analysis to determine the optimal rejection threshold as an analogy to decisionthreshold optimization in 2D ROC curves. We have demonstrated our proposed method with Naive Bayes classifier on Heart Diseasedataset and validated the efficiency of the method on multiple datasets from UCI Machine Learning Repository. Our experiments revealthat classification with optimized rejection threshold significantly improves true positive rates in biomedical datasets. Furthermore, falsepositive rates remain the same with rejection rates below 10% on average.en_US
dc.identifier.citation0
dc.identifier.doi[TRDIZIN-DOI-BELIRLENECEK-68]
dc.identifier.endpage27en_US
dc.identifier.issn2147-6799
dc.identifier.issue1en_US
dc.identifier.scopusqualityQ4
dc.identifier.startpage22en_US
dc.identifier.trdizinid413360
dc.identifier.urihttps://search.trdizin.gov.tr/en/yayin/detay/413360/rejection-threshold-optimization-using-3d-roc-curves-novel-findings-on-biomedical-datasets
dc.identifier.urihttps://hdl.handle.net/20.500.14517/7411
dc.identifier.volume9en_US
dc.institutionauthorUyar, Aslı
dc.institutionauthorUyar, Aslı
dc.language.isoen
dc.relation.ispartofInternational Journal of Intelligent Systems and Applications in Engineeringen_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBilgisayar Bilimlerien_US
dc.subjectTeori ve Metotlaren_US
dc.titleRejection Threshold Optimization using 3D ROC Curves: Novel Findings on Biomedical Datasetsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication9cfff5a5-9c60-4015-8119-1add2ac5a936
relation.isAuthorOfPublication.latestForDiscovery9cfff5a5-9c60-4015-8119-1add2ac5a936
relation.isOrgUnitOfPublicationc8741b9b-4455-4984-a245-360ece4aa1d9
relation.isOrgUnitOfPublication.latestForDiscoveryc8741b9b-4455-4984-a245-360ece4aa1d9

Files