Effects of Initial Temperature Changes on Swelling Percentage, Mechanical and Thermal Attributes of Polyacrylamide-Based Hydrogels Using the Molecular Dynamics Simulation
No Thumbnail Available
Date
2025
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Ltd
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Polyacrylamide hydrogels are widely used in various applications due to their unique swelling properties and mechanical performance. However, the effect of temperature on their behavior is not well understood. This study's goal is to use the LAMMPS software to do molecular dynamics simulations to examine how temperature affects the thermal characteristics, mechanical strength, and expansion of polyacrylamide hydrogels. As the temperature raised from 300 K to 350 K, the findings show that the elongation of hydrogels rose significantly, from 193.4 % to 224.4 %, due to enhanced water absorption and polymer chain mobility. As the temperature rose, the mechanical strength decreases from 0.0333 MPa to 0.0302 MPa, which is caused by the structure relaxing as the polymer chains got more flexible. Additionally, when the temperature rose, the thermal conductivity and heat flux rose as well, reaching 0.61 W/m·K and 1711 W/m², respectively, as shown by the improved heat transfer. These results have a major influence on the design and development of polyacrylamide hydrogels for use in wound healing, tissue engineering, and drug delivery systems. © 2024
Description
Keywords
Hydrogel, Mechanical Strength, Molecular Dynamics Simulation, Polyacrylamide, Temperature
Turkish CoHE Thesis Center URL
Fields of Science
Citation
0
WoS Q
Q1
Scopus Q
Q1
Source
International Communications in Heat and Mass Transfer
Volume
164