A novel numerical method to solve fractional ordinary differential equations with proportional Caputo derivatives
dc.authorid | Kumar, Pushpendra/0000-0002-7755-2837 | |
dc.authorscopusid | 57222252323 | |
dc.authorscopusid | 57217132593 | |
dc.contributor.author | Mahatekar, Yogita M. | |
dc.contributor.author | Kumar, Pushpendra | |
dc.date.accessioned | 2024-10-15T20:20:21Z | |
dc.date.available | 2024-10-15T20:20:21Z | |
dc.date.issued | 2024 | |
dc.department | Okan University | en_US |
dc.department-temp | [Mahatekar, Yogita M.] COEP Technol Univ, Dept Math, Pune 411005, Maharashtra, India; [Kumar, Pushpendra] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Kumar, Pushpendra] Near East Univ TRNC, Math Res Ctr, Dept Math, Mersin, Turkiye | en_US |
dc.description | Kumar, Pushpendra/0000-0002-7755-2837 | en_US |
dc.description.abstract | In this paper, we develop a novel numerical scheme, namely 'NPCM-PCDE,' to integrate fractional ordinary differential equations with proportional Caputo derivatives of the type (pc)D(alpha)u(t) = f(1)(t, u(t)), t >= 0, 0 < alpha < 1 involving a non-linear operator f(1). A new method is developed using a natural discretization of the proportional Caputo derivative and the decomposition method to decompose the non-linear operator f(1). The error and stability analyses for the proposed method are provided. Some illustrated examples are given to compare the solution curves graphically with the exact solution and to prove the utility and efficiency of the method. The proposed NPCM-PCDE is found to be efficient, easy to implement, convergent, and stable. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | 0 | |
dc.identifier.doi | 10.1088/1402-4896/ad7897 | |
dc.identifier.issn | 0031-8949 | |
dc.identifier.issn | 1402-4896 | |
dc.identifier.issue | 10 | en_US |
dc.identifier.scopus | 2-s2.0-85205025044 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.1088/1402-4896/ad7897 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14517/6568 | |
dc.identifier.volume | 99 | en_US |
dc.identifier.wos | WOS:001315430400001 | |
dc.identifier.wosquality | Q2 | |
dc.language.iso | en | |
dc.publisher | Iop Publishing Ltd | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | fractional differential equations | en_US |
dc.subject | proportional Caputo derivative | en_US |
dc.subject | error analysis | en_US |
dc.subject | stability | en_US |
dc.title | A novel numerical method to solve fractional ordinary differential equations with proportional Caputo derivatives | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |