Hyperspectral image classification with convolutional networks trained with self-dual attribute profiles

dc.authorwosidAptoula, Erchan/AAI-1070-2020
dc.contributor.authorKoc, Safak Guner
dc.contributor.authorAptoula, Erchan
dc.date.accessioned2024-10-15T20:21:12Z
dc.date.available2024-10-15T20:21:12Z
dc.date.issued2017
dc.departmentOkan Universityen_US
dc.department-temp[Koc, Safak Guner] Okan Univ, Mekatron Muhendisligi Bolumu, Istanbul, Turkey; [Aptoula, Erchan] Gebze Tekn Univ, Bilisim Teknol Enstitusu, Kocacli, Turkeyen_US
dc.description.abstractAttribute profiles are widely regarded among the most prominent spectral-spatial pixel description methods, providing high performance at a low computational cost. Following their success with computer vision applications, deep learning methods on the other hand are also being rapidly deployed and adapted into the remote sensing image analysis domain, where they already provide competitive description performances. The combination of attribute profiles with convolutional neural networks has recently taken place, showing that these powerful approaches can collaborate. In this paper we explore that direction one step further, by first feeding a convolutional neural network self-dual attribute profiles stacked as a tensor, and then by harvesting the ultimate layer's features for a supervised classification. Our preliminary experiments indicate that this approach leads to a performance improvement.en_US
dc.description.woscitationindexConference Proceedings Citation Index - Science
dc.identifier.citationcount1
dc.identifier.isbn9781509064946
dc.identifier.issn2165-0608
dc.identifier.urihttps://hdl.handle.net/20.500.14517/6614
dc.identifier.wosWOS:000413813100072
dc.language.isotr
dc.publisherIeeeen_US
dc.relation.ispartof25th Signal Processing and Communications Applications Conference (SIU) -- MAY 15-18, 2017 -- Antalya, TURKEYen_US
dc.relation.ispartofseriesSignal Processing and Communications Applications Conference
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectattribute profilesen_US
dc.subjecttree of shapesen_US
dc.subjectconvolutional neural networksen_US
dc.subjectpixel classificationen_US
dc.subjecthyperspectral imagesen_US
dc.titleHyperspectral image classification with convolutional networks trained with self-dual attribute profilesen_US
dc.typeConference Objecten_US
dc.wos.citedbyCount1
dspace.entity.typePublication

Files