Fixed-Time Synchronization of Fractional-Order Hopfield Neural Networks with Proportional Delays
dc.authorscopusid | 57217132593 | |
dc.authorscopusid | 57202855132 | |
dc.contributor.author | Kumar, P. | |
dc.contributor.author | Assali, E.A. | |
dc.date.accessioned | 2025-08-15T19:24:00Z | |
dc.date.available | 2025-08-15T19:24:00Z | |
dc.date.issued | 2026 | |
dc.department | Okan University | en_US |
dc.department-temp | [Kumar P.] Dhirubhai Ambani Institute of Information and Communication Technology, Gujarat, Gandhinagar, 382007, India, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkey; [Assali E.A.] University of Jendouba, Higher School of Engineering of Medjez el Bab (ESIM), Route du Kef Km 5, Medjez el Bab, Tunisia, University of Carthage, Faculty of Sciences of Bizerte, Department of Mathematics, Research Laboratory GAMA LR21ES10, Bizerta, Zarzouna, 7021, Tunisia | en_US |
dc.description.abstract | This article explores the fixed-time synchronization of fractional-order Hopfield neural networks incorporating proportional delays. Unlike finite-time synchronization, where the convergence time varies based on the initial synchronization errors, fixed-time synchronization allows for a predetermined settling time that remains independent of initial conditions. to achieve fixed-time synchronization, two types of feedback control strategies incorporating fractional integrals are employed: one based on state feedback and another utilizing a controller designed with a Lyapunov function and an exponential function. By designing appropriate Lyapunov functions and employing inequality techniques, multiple sufficient conditions were established to guarantee the fixed-time synchronization of the considered systems under these control strategies. Finally, two numerical examples are presented to demonstrate the validity and practical relevance of the theoretical findings. © 2025 International AsSociation for Mathematics and Computers in Simulation (IMACS) | en_US |
dc.identifier.doi | 10.1016/j.matcom.2025.07.035 | |
dc.identifier.endpage | 380 | en_US |
dc.identifier.issn | 0378-4754 | |
dc.identifier.scopus | 2-s2.0-105011519888 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 367 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.matcom.2025.07.035 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14517/8249 | |
dc.identifier.volume | 240 | en_US |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier B.V. | en_US |
dc.relation.ispartof | Mathematics and Computers in Simulation | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Control | en_US |
dc.subject | Fixed-Time Synchronization | en_US |
dc.subject | Fractional-Order | en_US |
dc.subject | Hopfield Neural Networks | en_US |
dc.title | Fixed-Time Synchronization of Fractional-Order Hopfield Neural Networks with Proportional Delays | en_US |
dc.type | Article | en_US |