PLANT IDENTIFICATION USING LOCAL INVARIANTS

dc.authorid Yanikoglu, Berrin/0000-0001-7403-7592
dc.authorwosid Yanikoglu, Berrin/AAE-4843-2022
dc.authorwosid Aptoula, Erchan/AAI-1070-2020
dc.contributor.author Yildiran, S. Tolga
dc.contributor.author Yanikoglu, Berrin
dc.contributor.author Abdullah, Erhan
dc.date.accessioned 2024-10-15T20:18:49Z
dc.date.available 2024-10-15T20:18:49Z
dc.date.issued 2014
dc.department Okan University en_US
dc.department-temp [Yildiran, S. Tolga; Yanikoglu, Berrin] Sabanci Univ, Muhendislik & Doga Bilimleri Fak, Istanbul, Turkey; [Abdullah, Erhan] Okan Univ, Bilgisayar Muhendisligi Bolumu, Istanbul, Turkey en_US
dc.description Yanikoglu, Berrin/0000-0001-7403-7592 en_US
dc.description.abstract We present a plant image recognition system geared towards plants with flowers. The system uses local invariants with Dense SIFT features and Bag of Visual Words representation, while the classification is done using Support Vector Machines. Our approach contains a pre-classification stage where images are categorized into color subgroups, to reduce the complexity of the problem. Using a 161-class subset of the ImageClef'2013 flower dataset, the classification accuracy is measured as %42.68, compared to %18 eithout the pre-classification. en_US
dc.description.woscitationindex Conference Proceedings Citation Index - Science
dc.identifier.citationcount 0
dc.identifier.endpage 2097 en_US
dc.identifier.isbn 9781479948741
dc.identifier.issn 2165-0608
dc.identifier.startpage 2094 en_US
dc.identifier.uri https://hdl.handle.net/20.500.14517/6413
dc.identifier.wos WOS:000356351400503
dc.language.iso tr
dc.publisher Ieee en_US
dc.relation.ispartof 22nd IEEE Signal Processing and Communications Applications Conference (SIU) -- APR 23-25, 2014 -- Karadeniz Teknik Univ, Trabzon, TURKEY en_US
dc.relation.ispartofseries Signal Processing and Communications Applications Conference
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Dense SIFT K Means Clustering en_US
dc.subject Bag of Visual Words (BOVW) en_US
dc.subject SVMs en_US
dc.subject PHOW en_US
dc.title PLANT IDENTIFICATION USING LOCAL INVARIANTS en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 0

Files