Remote sensing image retrieval using morphological texture descriptors

dc.authorwosid Aptoula, Erchan/AAI-1070-2020
dc.contributor.author Aptoula, Erchan
dc.contributor.author Korkmaz, Semih
dc.date.accessioned 2024-10-15T20:18:27Z
dc.date.available 2024-10-15T20:18:27Z
dc.date.issued 2013
dc.department Okan University en_US
dc.department-temp [Aptoula, Erchan; Korkmaz, Semih] Okan Univ, Bilgisayar Muhendisligi Bolumu, Istanbul, Turkey en_US
dc.description.abstract This paper presents the results of applying morphological texture descriptors to the problem of content-based retrieval of remote sensing images. Mathematical morphology offers a variety of multi-scale texture descriptors, capable of computing translation, rotation and illumination invariant features. In particular, we focus on the circular covariance histogram and the rotation invariant points approaches, and test them with the UC Merced Land Use dataset. They are compared against other known descriptors such as LBP and Gabor filters, and are shown to provide either comparable or superior performance despite their shorter feature vector length. en_US
dc.description.woscitationindex Conference Proceedings Citation Index - Science
dc.identifier.citationcount 0
dc.identifier.isbn 9781467355636
dc.identifier.isbn 9781467355629
dc.identifier.issn 2165-0608
dc.identifier.uri https://hdl.handle.net/20.500.14517/6379
dc.identifier.wos WOS:000325005300066
dc.language.iso tr
dc.publisher Ieee en_US
dc.relation.ispartof 21st Signal Processing and Communications Applications Conference (SIU) -- APR 24-26, 2013 -- CYPRUS en_US
dc.relation.ispartofseries Signal Processing and Communications Applications Conference
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Mathematical morphology en_US
dc.subject texture description en_US
dc.subject circular covariance histogram en_US
dc.title Remote sensing image retrieval using morphological texture descriptors en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 0

Files