Meta-Heuristic Tuned With Gudermannian Neural Network for the Singular Neumann, Dirichlet and Neumann-Robin Boundary Conditions

dc.contributor.author Sabir, Zulqurnain
dc.contributor.author Raja, Muhammad Asif Zahoor
dc.contributor.author Umar, Muhammad
dc.contributor.author Salahshour, Soheil
dc.contributor.author Awan, Saeed Ehsan
dc.contributor.author Asghar, Malik Summair
dc.date.accessioned 2025-07-15T19:03:53Z
dc.date.available 2025-07-15T19:03:53Z
dc.date.issued 2025
dc.department Okan University en_US
dc.department-temp [Sabir, Zulqurnain] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Raja, Muhammad Asif Zahoor] Natl Yunlin Univ Sci & Technol, Future Technol Res Ctr, 123 Univ Rd,Sect 3, Touliu 64002, Taiwan; [Umar, Muhammad; Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Awan, Saeed Ehsan] COMSATS Univ Islamabad, Dept Comp Engn, Attock Campus, Attock 43600, Pakistan; [Asghar, Malik Summair] COMSATS Univ Islamabad, Comp Engn Dept, Abbottabad Campus, Islamabad, Pakistan en_US
dc.description.abstract The purpose of the current study is to design a feed forward Gudermannian neural networks for a singular Lane-Emden model based Neumann, Neumann-Robin and Dirichlet boundary conditions arising in numerous physical systems. The procedure based on the GNNs is exploited through the optimization of global and local search methods, i.e., genetic algorithm and active-set technique. A fitness function is constructed using the model and its boundary conditions, while the efficiency of the scheme is observed through the optimization with the hybridization of global and local search schemes. Four different nonlinear variants of the singular Lane-Emden model based Neumann, Neumann-Robin and Dirichlet boundary conditions have been numerically presented to validate the efficiency and accuracy of the model. The comparison of the obtained and exact results is used to verify the validity of the designed procedure. Moreover, different statistical measures have been implemented to certify the reliability of the proposed technique. en_US
dc.description.woscitationindex Emerging Sources Citation Index
dc.identifier.doi 10.1007/s41939-025-00961-6
dc.identifier.issn 2520-8160
dc.identifier.issn 2520-8179
dc.identifier.issue 8 en_US
dc.identifier.scopusquality Q3
dc.identifier.uri https://doi.org/10.1007/s41939-025-00961-6
dc.identifier.uri https://hdl.handle.net/20.500.14517/8079
dc.identifier.volume 8 en_US
dc.identifier.wos WOS:001521883700002
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Springernature en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Lane-Emden en_US
dc.subject Gudermannian Neural Networks en_US
dc.subject Neumann-Robin And Dirichlet en_US
dc.subject Hybrid Scheme en_US
dc.subject Active-Set Technique en_US
dc.subject Genetic Algorithm en_US
dc.title Meta-Heuristic Tuned With Gudermannian Neural Network for the Singular Neumann, Dirichlet and Neumann-Robin Boundary Conditions en_US
dc.type Article en_US

Files