Vehicle yaw rate estimation using a virtual sensor

dc.authorscopusid 34869466300
dc.authorscopusid 37661491200
dc.authorscopusid 36810256900
dc.authorscopusid 7004242785
dc.authorscopusid 6701499807
dc.authorscopusid 55319212000
dc.contributor.author Emirler,M.T.
dc.contributor.author Kahraman,K.
dc.contributor.author Şentürk,M.
dc.contributor.author Aksun Güvenç,B.
dc.contributor.author Güvenç,L.
dc.contributor.author Efendioǧlu,B.
dc.date.accessioned 2024-05-25T12:31:31Z
dc.date.available 2024-05-25T12:31:31Z
dc.date.issued 2013
dc.department Okan University en_US
dc.department-temp Emirler M.T., Mechanical Engineering Department, Istanbul Technical University, 34437 Istanbul, Turkey; Kahraman K., Mekar Labs, Mechanical Engineering Department, Istanbul Okan University, Tuzla, 34959 Istanbul, Turkey; Şentürk M., Mekar Labs, Mechanical Engineering Department, Istanbul Okan University, Tuzla, 34959 Istanbul, Turkey; Aksun Güvenç B., Mekar Labs, Mechanical Engineering Department, Istanbul Okan University, Tuzla, 34959 Istanbul, Turkey; Güvenç L., Mekar Labs, Mechanical Engineering Department, Istanbul Okan University, Tuzla, 34959 Istanbul, Turkey; Efendioǧlu B., Tofaş RandD Center, 16010 Bursa, Turkey en_US
dc.description.abstract Road vehicle yaw stability control systems like electronic stability program (ESP) are important active safety systems used for maintaining lateral stability of the vehicle. Vehicle yaw rate is the key parameter that needs to be known by a yaw stability control system. In this paper, yaw rate is estimated using a virtual sensor which contains kinematic relations and a velocity-scheduled Kalman filter. Kinematic estimation is carried out using wheel speeds, dynamic tire radius, and front wheel steering angle. In addition, a velocity-scheduled Kalman filter utilizing the linearized single-track model of the road vehicle is used in the dynamic estimation part of the virtual sensor. The designed virtual sensor is successfully tested offline using a validated, high degrees of freedom, and high fidelity vehicle model and using hardware-in-the-loop simulations. Moreover, actual road testing is carried out and the estimated yaw rate from the virtual sensor is compared with the actual yaw rate obtained from the commercial yaw rate sensor to demonstrate the effectiveness of the virtual yaw rate sensor in practical use. © 2013 Mümin Tolga Emirler et al. en_US
dc.identifier.citationcount 9
dc.identifier.doi 10.1155/2013/582691
dc.identifier.issn 1687-5710
dc.identifier.scopus 2-s2.0-84877935314
dc.identifier.uri https://doi.org/10.1155/2013/582691
dc.identifier.uri https://hdl.handle.net/20.500.14517/2296
dc.identifier.volume 2013 en_US
dc.language.iso en
dc.relation.ispartof International Journal of Vehicular Technology en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 9
dc.subject [No Keyword Available] en_US
dc.title Vehicle yaw rate estimation using a virtual sensor en_US
dc.type Article en_US

Files