Performance analysis of classification models for medical diagnostic decision support systems;

dc.authorscopusid 55807152500
dc.authorscopusid 55664907400
dc.contributor.author Segmen,E.
dc.contributor.author Uyar,A.
dc.date.accessioned 2024-05-25T12:31:22Z
dc.date.available 2024-05-25T12:31:22Z
dc.date.issued 2013
dc.department Okan University en_US
dc.department-temp Segmen E., Bilgisayar Mühendisligi Bölümü, Okan Üniversitesi Istanbul, Turkey; Uyar A., Bilgisayar Mühendisligi Bölümü, Okan Üniversitesi Istanbul, Turkey en_US
dc.description.abstract As a part of electronic healthcare systems, medical diagnostic decision support systems have been more popular in clinical routine. It is critical to decide the best model to provide reliable machine learning based decision support in diagnostic problems. In this study, the performance of common classification algorithms have been comparatively evaluated using public medical datasets. The experimental results reveal that, although there is no single best algorithm for all datasets, MLP and Naive Bayes methods have provided relatively higher success rates. © 2013 IEEE. en_US
dc.identifier.citationcount 2
dc.identifier.doi 10.1109/SIU.2013.6531316
dc.identifier.isbn 978-146735562-9
dc.identifier.scopus 2-s2.0-84880879260
dc.identifier.uri https://doi.org/10.1109/SIU.2013.6531316
dc.identifier.uri https://hdl.handle.net/20.500.14517/2282
dc.institutionauthor Uyar, Aslı
dc.institutionauthor Uyar A.
dc.language.iso tr
dc.relation.ispartof 2013 21st Signal Processing and Communications Applications Conference, SIU 2013 -- 2013 21st Signal Processing and Communications Applications Conference, SIU 2013 -- 24 April 2013 through 26 April 2013 -- Haspolat -- 98109 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 2
dc.subject Classification methods en_US
dc.subject Medical decision support systems en_US
dc.subject Performance analysis en_US
dc.title Performance analysis of classification models for medical diagnostic decision support systems; en_US
dc.title.alternative Tibbi teshis karar destek sistemlerinde siniflandirici modellerin performans analiz en_US
dc.type Conference Object en_US

Files