Analysis of a Normalized Structure of a Complex Fractal-Fractional Integral Transform Using Special Functions

dc.authorid Salahshour, Soheil/0000-0003-1390-3551
dc.authorid Agnes Orsolya, Pall-Szabo/0000-0003-3469-3362
dc.authorid Ibrahim, Rabha W./0000-0001-9341-025X
dc.authorwosid Agnes Orsolya, Pall-Szabo/H-4327-2017
dc.authorwosid Ibrahim, Rabha W./D-3312-2017
dc.contributor.author Ibrahim, Rabha W.
dc.contributor.author Salahshour, Soheil
dc.contributor.author Pall-szabo, Agnes Orsolya
dc.date.accessioned 2024-10-15T20:20:52Z
dc.date.available 2024-10-15T20:20:52Z
dc.date.issued 2024
dc.department Okan University en_US
dc.department-temp [Ibrahim, Rabha W.; Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Adv Comp Lab, TR-34959 Istanbul, Turkiye; [Ibrahim, Rabha W.] Near East Univ, Math Res Ctr, Dept Math, Near East Blvd,Mersin 10, TR-99138 Nicosia, Turkiye; [Ibrahim, Rabha W.] Al Ayen Univ, Sci Res Ctr, Informat & Commun Technol Res Grp, Nasiriyah 64001, Iraq; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, TR-34349 Istanbul, Turkiye; [Salahshour, Soheil] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut 1102, Lebanon; [Pall-szabo, Agnes Orsolya] Babes Bolyai Univ, Fac Econ & Business Adm, Dept Stat Forecasts Math, Cluj Napoca 400084, Romania en_US
dc.description Salahshour, Soheil/0000-0003-1390-3551; Agnes Orsolya, Pall-Szabo/0000-0003-3469-3362; Ibrahim, Rabha W./0000-0001-9341-025X en_US
dc.description.abstract By using the most generalized gamma function (parametric gamma function, or p-gamma function), we present the most generalized Rabotnov function, called the p-Rabotnov function. Consequently, new fractal-fractional differential and integral operators of a complex variable in an open unit disk are defined and investigated analytically and geometrically. We address some inequalities involving the generalized fractal-fractional integral operator in some spaces of analytic functions. A novel complex fractal-fractional integral transform (CFFIT) is presented. A normalization of the proposed CFFIT is observed in the open unit disk. Examples are illustrated for power series of analytic functions. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citationcount 0
dc.identifier.doi 10.3390/axioms13080522
dc.identifier.issn 2075-1680
dc.identifier.issue 8 en_US
dc.identifier.uri https://doi.org/10.3390/axioms13080522
dc.identifier.uri https://hdl.handle.net/20.500.14517/6587
dc.identifier.volume 13 en_US
dc.identifier.wos WOS:001305164200001
dc.identifier.wosquality Q2
dc.institutionauthor Salahshour, Soheıl
dc.language.iso en
dc.publisher Mdpi en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject fractional calculus en_US
dc.subject fractal calculus en_US
dc.subject fractional difference operator en_US
dc.subject fractal-fractional differential operator en_US
dc.subject fractal-fractional calculus en_US
dc.subject complex transform en_US
dc.subject subordination and superordination en_US
dc.title Analysis of a Normalized Structure of a Complex Fractal-Fractional Integral Transform Using Special Functions en_US
dc.type Article en_US
dc.wos.citedbyCount 0

Files