Plant identification using local invariants;

dc.authorscopusid 56246719900
dc.authorscopusid 35617171700
dc.authorscopusid 56246232800
dc.contributor.author Yildiran,S.T.
dc.contributor.author Yanikoglu,B.
dc.contributor.author Abdullah,E.
dc.date.accessioned 2024-05-25T12:32:00Z
dc.date.available 2024-05-25T12:32:00Z
dc.date.issued 2014
dc.department Okan University en_US
dc.department-temp Yildiran S.T., Mühendislik Ve Doga Bilimleri Fakültesi, Sabanci Üniversitesi, Turkey; Yanikoglu B., Mühendislik Ve Doga Bilimleri Fakültesi, Sabanci Üniversitesi, Turkey; Abdullah E., Bilgisayar Mühendisliǧi Bölümü, Okan Üniversitesi, Turkey en_US
dc.description.abstract We present a plant image recognition system geared towards plants with flowers. The system uses local invariants with Dense SIFT features and Bag of Visual Words representation, while the classification is done using Support Vector Machines. Our approach contains a pre-classification stage where images are categorized into color subgroups, to reduce the complexity of the problem. Using a 161-class subset of the ImageClef'2013 flower dataset, the classification accuracy is measured as %42.68, compared to %18 eithout the pre-classification. © 2014 IEEE. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1109/SIU.2014.6830674
dc.identifier.endpage 2097 en_US
dc.identifier.isbn 978-147994874-1
dc.identifier.scopus 2-s2.0-84903761388
dc.identifier.startpage 2094 en_US
dc.identifier.uri https://doi.org/10.1109/SIU.2014.6830674
dc.identifier.uri https://hdl.handle.net/20.500.14517/2316
dc.language.iso tr
dc.publisher IEEE Computer Society en_US
dc.relation.ispartof 2014 22nd Signal Processing and Communications Applications Conference, SIU 2014 - Proceedings -- 2014 22nd Signal Processing and Communications Applications Conference, SIU 2014 -- 23 April 2014 through 25 April 2014 -- Trabzon -- 106053 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject Bag of Visual Words (BOVW) en_US
dc.subject Dense SIFT en_US
dc.subject K Means Clustering en_US
dc.subject PHOW en_US
dc.subject SVMs en_US
dc.title Plant identification using local invariants; en_US
dc.title.alternative Yerel deǧişkenlerle bitki tanima en_US
dc.type Conference Object en_US

Files