Force law in material media, hidden momentum and quantum phases

dc.authoridYarman, Tolga/0000-0003-3209-2264
dc.authorscopusid7004016669
dc.authorscopusid55893162300
dc.authorscopusid6602787345
dc.authorwosidYarman, Tolga/Q-9753-2019
dc.contributor.authorYarman, Nuh Tolga
dc.contributor.authorMissevitch, Oleg V.
dc.contributor.authorYarman, T.
dc.contributor.otherEnerji Sistemleri Mühendisliği / Energy Systems Engineering
dc.date.accessioned2024-05-25T11:17:14Z
dc.date.available2024-05-25T11:17:14Z
dc.date.issued2016
dc.departmentOkan Universityen_US
dc.department-temp[Kholmetskii, Alexander L.] Belarusian State Univ, Minsk, BELARUS; [Missevitch, Oleg V.] Belarusian State Univ, Inst Nucl Problems, Minsk, BELARUS; [Yarman, T.] Okan Univ, Istanbul, Turkey; [Yarman, T.] Savronik, Eskisehir, Turkeyen_US
dc.descriptionYarman, Tolga/0000-0003-3209-2264en_US
dc.description.abstractWe address to the force law in classical electrodynamics of material media, paying attention on the force term due to time variation of hidden momentum of magnetic dipoles. We highlight that the emergence of this force component is required by the general theorem, deriving zero total momentum for any static configuration of charges/currents. At the same time, we disclose the impossibility to add this force term covariantly to the Lorentz force law in material media. We further show that the adoption of the Einstein-Laub force law does not resolve the issue, because for a small electric/magnetic dipole, the density of Einstein-Laub force integrates exactly to the same equation, like the Lorentz force with the inclusion of hidden momentum contribution. Thus, none of the available expressions for the force on a moving dipole is compatible with the relativistic transformation of force, and we support this statement with a number of particular examples. In this respect, we suggest applying the Lagrangian approach to the derivation of the force law in a magnetized/polarized medium. In the framework of this approach we obtain the novel expression for the force on a small electric/magnetic dipole, with the novel expression for its generalized momentum. The latter expression implies two novel quantum effects with non-topological phases, when an electric dipole is moving in an electric field, and when a magnetic dipole is moving in a magnetic field. These phases, in general, are not related to dynamical effects, because they are not equal to zero, when the classical force on a dipole is vanishing. The implications of the obtained results are discussed. (C) 2016 Elsevier Inc. All rights reserved.en_US
dc.identifier.citation10
dc.identifier.doi10.1016/j.aop.2016.03.004
dc.identifier.endpage160en_US
dc.identifier.issn0003-4916
dc.identifier.issn1096-035X
dc.identifier.scopus2-s2.0-84962743526
dc.identifier.scopusqualityQ2
dc.identifier.startpage139en_US
dc.identifier.urihttps://doi.org/10.1016/j.aop.2016.03.004
dc.identifier.urihttps://hdl.handle.net/20.500.14517/231
dc.identifier.volume369en_US
dc.identifier.wosWOS:000375521800008
dc.identifier.wosqualityQ2
dc.language.isoen
dc.publisherAcademic Press inc Elsevier Scienceen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMacroscopic classical electrodynamicsen_US
dc.subjectForce law in material mediaen_US
dc.subjectLagrangianen_US
dc.subjectQuantum phasesen_US
dc.titleForce law in material media, hidden momentum and quantum phasesen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicatione8750528-f58f-486e-9a0a-eb4ab45fb468
relation.isAuthorOfPublication.latestForDiscoverye8750528-f58f-486e-9a0a-eb4ab45fb468
relation.isOrgUnitOfPublicatione2c8b290-2656-4ea1-8e8f-954383d6b397
relation.isOrgUnitOfPublication.latestForDiscoverye2c8b290-2656-4ea1-8e8f-954383d6b397

Files