A promising exponentially-fitted two-derivative Runge-Kutta-Nystrom method for solving y′′ = <i>f(x,y)</i>: Application to Verhulst logistic growth model

dc.authoridSenu, Norazak/0000-0001-8614-8281
dc.authorscopusid58903782000
dc.authorscopusid7006811882
dc.authorscopusid55670963500
dc.authorscopusid55602202100
dc.authorwosidSenu, Norazak/G-2776-2014
dc.contributor.authorLee, K. C.
dc.contributor.authorNazar, R.
dc.contributor.authorSenu, N.
dc.contributor.authorAhmadian, A.
dc.date.accessioned2024-05-25T11:37:25Z
dc.date.available2024-05-25T11:37:25Z
dc.date.issued2024
dc.departmentOkan Universityen_US
dc.department-temp[Lee, K. C.; Nazar, R.] Univ Kebangsaan Malaysia, Dept Math Sci, Bangi 43600, Selangor, Malaysia; [Senu, N.] Univ Putra Malaysia, Inst Math Res, Serdang 43400, Malaysia; [Senu, N.] Univ Putra Malaysia, Dept Math & Stat, Serdang 43400, Selangor, Malaysia; [Ahmadian, A.] Univ Mediterranea Reggio Calabria, Decis Lab, Reggio Di Calabria, Italy; [Ahmadian, A.] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Ahmadian, A.] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiyeen_US
dc.descriptionSenu, Norazak/0000-0001-8614-8281en_US
dc.description.abstractExplicit exponentially-fitted two-derivative Runge-Kutta-Nystrom method with single f-function and multiple third derivatives is proposed for solving special type of second-order ordinary differential equations with exponential solutions. B-series and rooted tree theory for the proposed method are developed for the derivation of order conditions. Then, we build frequency-dependent coefficients for the proposed method by integrating the second-order initial value problem exactly with solution in the linear composition of set functions e(lambda t) and e(-lambda t) with lambda is an element of R. An exponentially-fitted two-derivative Runge-Kutta-Nystrom method with three stages fifth order is derived. Linear stability and stability region of the proposed method are analyzed. The numerical tests show that the proposed method is more effective than other existing methods with similar algebraic order in the integration of special type of second-order ordinary differential equations with exponential solutions. Also, the proposed method is used to solve a famous application problem, Verhulst logistic growth model and the result shows the proposed method still works effectively for solving this model.en_US
dc.description.sponsorshipUniversiti Kebangsaan Malaysia [GGPM-2023-029, ST-2022-015]en_US
dc.description.sponsorship<B>Acknowledgments</B> This study was supported by the Grant Schemes (Ref. No. GGPM-2023-029 and Ref. No. ST-2022-015) awarded by Universiti Kebangsaan Malaysia. The authors declare that there is no conflict of interest related to the publication of this paper.en_US
dc.identifier.citation0
dc.identifier.doi10.1016/j.matcom.2023.12.018
dc.identifier.endpage49en_US
dc.identifier.issn0378-4754
dc.identifier.issn1872-7166
dc.identifier.scopus2-s2.0-85185837915
dc.identifier.scopusqualityQ1
dc.identifier.startpage28en_US
dc.identifier.urihttps://doi.org/10.1016/j.matcom.2023.12.018
dc.identifier.urihttps://hdl.handle.net/20.500.14517/1157
dc.identifier.volume219en_US
dc.identifier.wosWOS:001141278700001
dc.identifier.wosqualityQ1
dc.language.isoen
dc.publisherElsevieren_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectTwo-derivative Runge-Kutta-Nystrom methoden_US
dc.subjectSecond-order ordinary differential equationsen_US
dc.subjectExponentially-fitteden_US
dc.subjectStability regionen_US
dc.subjectNumerical testen_US
dc.titleA promising exponentially-fitted two-derivative Runge-Kutta-Nystrom method for solving y′′ = <i>f(x,y)</i>: Application to Verhulst logistic growth modelen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files