Radial Basis Functions Approximation Method for Time-Fractional FitzHugh-Nagumo Equation
dc.authorid | Ebadi, Mohammad Javad/0000-0002-1324-6953 | |
dc.authorid | Alam, Mehboob/0000-0001-7721-7767 | |
dc.authorscopusid | 57220800065 | |
dc.authorscopusid | 24168162900 | |
dc.authorscopusid | 57211855967 | |
dc.authorscopusid | 57224894950 | |
dc.authorscopusid | 23028598900 | |
dc.contributor.author | Alam, Mehboob | |
dc.contributor.author | Salahshour, Soheıl | |
dc.contributor.author | Ali, Ihteram | |
dc.contributor.author | Ebadi, M. J. | |
dc.contributor.author | Salahshour, Soheil | |
dc.date.accessioned | 2024-05-25T11:38:57Z | |
dc.date.available | 2024-05-25T11:38:57Z | |
dc.date.issued | 2023 | |
dc.department | Okan University | en_US |
dc.department-temp | [Alam, Mehboob; Haq, Sirajul] GIK Inst, Fac Engn Sci, Topi 23640, Pakistan; [Ali, Ihteram] Women Univ, Dept Math & Stat, Swabi 23430, Pakistan; [Ebadi, M. J.] Chabahar Maritime Univ, Dept Language, Chabahar 9971756499, Iran; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, TR-34959 Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, TR-34353 Istanbul, Turkiye; [Salahshour, Soheil] Lebanese Amer Univ, Dept Comp Sci & Math, POB 13-5053, Beirut, Lebanon | en_US |
dc.description | Ebadi, Mohammad Javad/0000-0002-1324-6953; Alam, Mehboob/0000-0001-7721-7767 | en_US |
dc.description.abstract | In this paper, a numerical approach employing radial basis functions has been applied to solve time-fractional FitzHugh-Nagumo equation. Spatial approximation is achieved by combining radial basis functions with the collocation method, while temporal discretization is accomplished using a finite difference scheme. To evaluate the effectiveness of this method, we first conduct an eigenvalue stability analysis and then validate the results with numerical examples, varying the shape parameter c of the radial basis functions. Notably, this method offers the advantage of being mesh-free, which reduces computational overhead and eliminates the need for complex mesh generation processes. To assess the method's performance, we subject it to examples. The simulated results demonstrate a high level of agreement with exact solutions and previous research. The accuracy and efficiency of this method are evaluated using discrete error norms, including L2, L infinity, and Lrms. | en_US |
dc.description.sponsorship | GIK Institute | en_US |
dc.description.sponsorship | The first author would like to express gratitude to the GIK Institute for their support during his MS studies. The authors would like to express their sincere thanks to the Department of Mathematics, Chabahar Maritime University, Chabahar, Iran, for the financial support. | en_US |
dc.identifier.citation | 1 | |
dc.identifier.doi | 10.3390/fractalfract7120882 | |
dc.identifier.issn | 2504-3110 | |
dc.identifier.issue | 12 | en_US |
dc.identifier.scopus | 2-s2.0-85180705923 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://doi.org/10.3390/fractalfract7120882 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14517/1310 | |
dc.identifier.volume | 7 | en_US |
dc.identifier.wos | WOS:001131060900001 | |
dc.institutionauthor | Salahshour S. | |
dc.institutionauthor | Salahshour, Soheıl | |
dc.language.iso | en | |
dc.publisher | Mdpi | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | fractional differential equation | en_US |
dc.subject | meshless method | en_US |
dc.subject | radial basis functions | en_US |
dc.subject | FitzHugh-Nagumo equation | en_US |
dc.subject | stability | en_US |
dc.title | Radial Basis Functions Approximation Method for Time-Fractional FitzHugh-Nagumo Equation | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f5ba517c-75fb-4260-af62-01c5f5912f3d | |
relation.isAuthorOfPublication.latestForDiscovery | f5ba517c-75fb-4260-af62-01c5f5912f3d |