Radial Basis Functions Approximation Method for Time-Fractional FitzHugh-Nagumo Equation

dc.authoridEbadi, Mohammad Javad/0000-0002-1324-6953
dc.authoridAlam, Mehboob/0000-0001-7721-7767
dc.authorscopusid57220800065
dc.authorscopusid24168162900
dc.authorscopusid57211855967
dc.authorscopusid57224894950
dc.authorscopusid23028598900
dc.contributor.authorAlam, Mehboob
dc.contributor.authorSalahshour, Soheıl
dc.contributor.authorAli, Ihteram
dc.contributor.authorEbadi, M. J.
dc.contributor.authorSalahshour, Soheil
dc.date.accessioned2024-05-25T11:38:57Z
dc.date.available2024-05-25T11:38:57Z
dc.date.issued2023
dc.departmentOkan Universityen_US
dc.department-temp[Alam, Mehboob; Haq, Sirajul] GIK Inst, Fac Engn Sci, Topi 23640, Pakistan; [Ali, Ihteram] Women Univ, Dept Math & Stat, Swabi 23430, Pakistan; [Ebadi, M. J.] Chabahar Maritime Univ, Dept Language, Chabahar 9971756499, Iran; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, TR-34959 Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, TR-34353 Istanbul, Turkiye; [Salahshour, Soheil] Lebanese Amer Univ, Dept Comp Sci & Math, POB 13-5053, Beirut, Lebanonen_US
dc.descriptionEbadi, Mohammad Javad/0000-0002-1324-6953; Alam, Mehboob/0000-0001-7721-7767en_US
dc.description.abstractIn this paper, a numerical approach employing radial basis functions has been applied to solve time-fractional FitzHugh-Nagumo equation. Spatial approximation is achieved by combining radial basis functions with the collocation method, while temporal discretization is accomplished using a finite difference scheme. To evaluate the effectiveness of this method, we first conduct an eigenvalue stability analysis and then validate the results with numerical examples, varying the shape parameter c of the radial basis functions. Notably, this method offers the advantage of being mesh-free, which reduces computational overhead and eliminates the need for complex mesh generation processes. To assess the method's performance, we subject it to examples. The simulated results demonstrate a high level of agreement with exact solutions and previous research. The accuracy and efficiency of this method are evaluated using discrete error norms, including L2, L infinity, and Lrms.en_US
dc.description.sponsorshipGIK Instituteen_US
dc.description.sponsorshipThe first author would like to express gratitude to the GIK Institute for their support during his MS studies. The authors would like to express their sincere thanks to the Department of Mathematics, Chabahar Maritime University, Chabahar, Iran, for the financial support.en_US
dc.identifier.citation1
dc.identifier.doi10.3390/fractalfract7120882
dc.identifier.issn2504-3110
dc.identifier.issue12en_US
dc.identifier.scopus2-s2.0-85180705923
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.3390/fractalfract7120882
dc.identifier.urihttps://hdl.handle.net/20.500.14517/1310
dc.identifier.volume7en_US
dc.identifier.wosWOS:001131060900001
dc.institutionauthorSalahshour S.
dc.institutionauthorSalahshour, Soheıl
dc.language.isoen
dc.publisherMdpien_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectfractional differential equationen_US
dc.subjectmeshless methoden_US
dc.subjectradial basis functionsen_US
dc.subjectFitzHugh-Nagumo equationen_US
dc.subjectstabilityen_US
dc.titleRadial Basis Functions Approximation Method for Time-Fractional FitzHugh-Nagumo Equationen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf5ba517c-75fb-4260-af62-01c5f5912f3d
relation.isAuthorOfPublication.latestForDiscoveryf5ba517c-75fb-4260-af62-01c5f5912f3d

Files