Multi-objective optimization of rheological behavior of nanofluids containing CuO nanoparticles by NSGA II, MOPSO, and MOGWO evolutionary algorithms and group method of data handling artificial neural networks

dc.authorid Jasim, Dheyaa Jumaah/0000-0001-7259-3392
dc.authorid Baghoolizadeh, Mohammadreza/0000-0002-3703-0866
dc.authorid Rostamzadeh-Renani, Mohammad/0000-0003-4744-5499
dc.authorscopusid 57216950040
dc.authorscopusid 57225906716
dc.authorscopusid 57338920800
dc.authorscopusid 57216954326
dc.authorscopusid 58141883400
dc.authorscopusid 23028598900
dc.authorscopusid 23028598900
dc.authorwosid Jasim, Dheyaa Jumaah/GPS-5013-2022
dc.contributor.author Rostamzadeh-Renani, Reza
dc.contributor.author Jasim, Dheyaa J.
dc.contributor.author Baghoolizadeh, Mohammadreza
dc.contributor.author Rostamzadeh-Renani, Mohammad
dc.contributor.author Andani, Hamid Taheri
dc.contributor.author Salahshour, Soheil
dc.contributor.author Baghaei, Sh.
dc.date.accessioned 2024-05-25T11:28:16Z
dc.date.available 2024-05-25T11:28:16Z
dc.date.issued 2024
dc.department Okan University en_US
dc.department-temp [Rostamzadeh-Renani, Reza; Rostamzadeh-Renani, Mohammad] Politecn Milan, Energy Dept, Via Lambruschini 4, I-20156 Milan, Italy; [Jasim, Dheyaa J.] Al Amarah Univ Coll, Dept Petr Engn, Maysan, Iraq; [Baghoolizadeh, Mohammadreza] Shahrekord Univ, Dept Mech Engn, Shahrekord 8818634141, Iran; [Andani, Hamid Taheri] Isfahan Univ Technol, Dept Elect Engn, Esfahan, Iran; [Baghaei, Sh.] Islamic Azad Univ, Dept Mech Engn, Khomeinishahr Branch, Khomeinishahr, Iran; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Dept Genet & Bioengn, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon en_US
dc.description Jasim, Dheyaa Jumaah/0000-0001-7259-3392; Baghoolizadeh, Mohammadreza/0000-0002-3703-0866; Rostamzadeh-Renani, Mohammad/0000-0003-4744-5499 en_US
dc.description.abstract In this article, the ability of GMDH artificial neural networks (ANNs) to predict the rheological behavior (RB) of nanofluids (NFs) containing CuO NPs is studied. ANNs are a powerful mathematical tool that can identify the relationship among the parameters without the need to extract the relationship among them. The main purpose of this study is to use the GMDH ANN method to generate and predict the viscosity (mu) parameter using several input variables (IPV) such as solid volume fraction (SVF), nanoparticles (NPs), temperature (Temp), and shear rate (SR). By pairing the GMDH ANN with the evolutionary algorithm, this capability is created so that the values predicted by the ANN are more compatible with the laboratory numbers. The evolutionary algorithms (EAs) used in this study include three algorithms: Non-Dominated Sorting Genetic Algorithm II (NSGA II), Multi-Objective Particle Swarm Optimization (MOPSO), and Multi-Objective Grey Wolf Optimizer (MOGWO). These algorithms are selected for optimization, among which the best performance is related to the coupling of GMDH ANN with the MOGWO algorithm. In the next step, the Genetic Algorithm (GA), the Particle Swarm Optimization (PSO), and the Grey Wolf Optimizer (GWO) algorithms are used. This process is done to minimize the target function (TF) (mu) and evaluate the optimal points. According to the obtained results, among the EAs used in this study, the best performance belongs to the GA algorithm. Finally, in the last part of this study, the most optimal mode for IPV and output variable (OPV) of TF is determined. Numerically, the values of IPV data, such as SVF, T, and SR, are respectively 0.2242%, 50, and 246.7427, and the most optimal value for the OPV of TF (mu) was estimated as 0.96686 cP. en_US
dc.identifier.citationcount 7
dc.identifier.doi 10.1016/j.mtcomm.2023.107709
dc.identifier.issn 2352-4928
dc.identifier.scopus 2-s2.0-85179013526
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1016/j.mtcomm.2023.107709
dc.identifier.uri https://hdl.handle.net/20.500.14517/1143
dc.identifier.volume 38 en_US
dc.identifier.wos WOS:001128471100001
dc.identifier.wosquality Q2
dc.institutionauthor Salahshour S.
dc.language.iso en
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 19
dc.subject GMDH en_US
dc.subject Multi-objective optimization en_US
dc.subject Rheological behavior en_US
dc.subject Evolutionary algorithms en_US
dc.subject ANNs en_US
dc.title Multi-objective optimization of rheological behavior of nanofluids containing CuO nanoparticles by NSGA II, MOPSO, and MOGWO evolutionary algorithms and group method of data handling artificial neural networks en_US
dc.type Article en_US
dc.wos.citedbyCount 17

Files