Multi-objective optimization of rheological behavior of nanofluids containing CuO nanoparticles by NSGA II, MOPSO, and MOGWO evolutionary algorithms and group method of data handling artificial neural networks

dc.authoridJasim, Dheyaa Jumaah/0000-0001-7259-3392
dc.authoridBaghoolizadeh, Mohammadreza/0000-0002-3703-0866
dc.authoridRostamzadeh-Renani, Mohammad/0000-0003-4744-5499
dc.authorscopusid57216950040
dc.authorscopusid57225906716
dc.authorscopusid57338920800
dc.authorscopusid57216954326
dc.authorscopusid58141883400
dc.authorscopusid23028598900
dc.authorscopusid23028598900
dc.authorwosidJasim, Dheyaa Jumaah/GPS-5013-2022
dc.contributor.authorRostamzadeh-Renani, Reza
dc.contributor.authorSalahshour, Soheıl
dc.contributor.authorBaghoolizadeh, Mohammadreza
dc.contributor.authorRostamzadeh-Renani, Mohammad
dc.contributor.authorAndani, Hamid Taheri
dc.contributor.authorSalahshour, Soheil
dc.contributor.authorBaghaei, Sh.
dc.date.accessioned2024-05-25T11:28:16Z
dc.date.available2024-05-25T11:28:16Z
dc.date.issued2024
dc.departmentOkan Universityen_US
dc.department-temp[Rostamzadeh-Renani, Reza; Rostamzadeh-Renani, Mohammad] Politecn Milan, Energy Dept, Via Lambruschini 4, I-20156 Milan, Italy; [Jasim, Dheyaa J.] Al Amarah Univ Coll, Dept Petr Engn, Maysan, Iraq; [Baghoolizadeh, Mohammadreza] Shahrekord Univ, Dept Mech Engn, Shahrekord 8818634141, Iran; [Andani, Hamid Taheri] Isfahan Univ Technol, Dept Elect Engn, Esfahan, Iran; [Baghaei, Sh.] Islamic Azad Univ, Dept Mech Engn, Khomeinishahr Branch, Khomeinishahr, Iran; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Dept Genet & Bioengn, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanonen_US
dc.descriptionJasim, Dheyaa Jumaah/0000-0001-7259-3392; Baghoolizadeh, Mohammadreza/0000-0002-3703-0866; Rostamzadeh-Renani, Mohammad/0000-0003-4744-5499en_US
dc.description.abstractIn this article, the ability of GMDH artificial neural networks (ANNs) to predict the rheological behavior (RB) of nanofluids (NFs) containing CuO NPs is studied. ANNs are a powerful mathematical tool that can identify the relationship among the parameters without the need to extract the relationship among them. The main purpose of this study is to use the GMDH ANN method to generate and predict the viscosity (mu) parameter using several input variables (IPV) such as solid volume fraction (SVF), nanoparticles (NPs), temperature (Temp), and shear rate (SR). By pairing the GMDH ANN with the evolutionary algorithm, this capability is created so that the values predicted by the ANN are more compatible with the laboratory numbers. The evolutionary algorithms (EAs) used in this study include three algorithms: Non-Dominated Sorting Genetic Algorithm II (NSGA II), Multi-Objective Particle Swarm Optimization (MOPSO), and Multi-Objective Grey Wolf Optimizer (MOGWO). These algorithms are selected for optimization, among which the best performance is related to the coupling of GMDH ANN with the MOGWO algorithm. In the next step, the Genetic Algorithm (GA), the Particle Swarm Optimization (PSO), and the Grey Wolf Optimizer (GWO) algorithms are used. This process is done to minimize the target function (TF) (mu) and evaluate the optimal points. According to the obtained results, among the EAs used in this study, the best performance belongs to the GA algorithm. Finally, in the last part of this study, the most optimal mode for IPV and output variable (OPV) of TF is determined. Numerically, the values of IPV data, such as SVF, T, and SR, are respectively 0.2242%, 50, and 246.7427, and the most optimal value for the OPV of TF (mu) was estimated as 0.96686 cP.en_US
dc.identifier.citation7
dc.identifier.doi10.1016/j.mtcomm.2023.107709
dc.identifier.issn2352-4928
dc.identifier.scopus2-s2.0-85179013526
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1016/j.mtcomm.2023.107709
dc.identifier.urihttps://hdl.handle.net/20.500.14517/1143
dc.identifier.volume38en_US
dc.identifier.wosWOS:001128471100001
dc.identifier.wosqualityQ2
dc.institutionauthorSalahshour S.
dc.language.isoen
dc.publisherElsevieren_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGMDHen_US
dc.subjectMulti-objective optimizationen_US
dc.subjectRheological behavioren_US
dc.subjectEvolutionary algorithmsen_US
dc.subjectANNsen_US
dc.titleMulti-objective optimization of rheological behavior of nanofluids containing CuO nanoparticles by NSGA II, MOPSO, and MOGWO evolutionary algorithms and group method of data handling artificial neural networksen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf5ba517c-75fb-4260-af62-01c5f5912f3d
relation.isAuthorOfPublication.latestForDiscoveryf5ba517c-75fb-4260-af62-01c5f5912f3d

Files