Chronic Kidney Disease Prediction on Imbalanced Data by Multilayer Perceptron

dc.authorscopusid6505872114
dc.authorwosidYILDIRIM, PINAR/X-1182-2019
dc.contributor.authorYıldırım, Pınar
dc.contributor.otherBilgisayar Mühendisliği / Computer Engineering
dc.date.accessioned2024-05-25T11:20:21Z
dc.date.available2024-05-25T11:20:21Z
dc.date.issued2017
dc.departmentOkan Universityen_US
dc.department-temp[Yildirim, Pinar] Okan Univ, Dept Comp Engn, Fac Engn, Istanbul, Turkeyen_US
dc.description.abstractImbalanced data is an important problem for medical data analysis. Medical datasets are often not balanced in their class labels. The traditional classifiers can be seriously affected by the imbalanced class distribution in the data. This is because they aim to optimize the overall accuracy without considering the relative distribution of each class. This study searches the effect of class imbalance in training data when developing neural network classifier for medical decision making on chronic kidney disease. Neural networks are widely used in a number of applications including data mining and decision systems. Back propagation networks are a popular type of neural networks that can be trained to recognize different patterns. The importance of these networks was considered and a comparative study of some sampling algorithms was performed based on multilayer perceptron with different learning rate values for the prediction of chronic kidney disease. This study reveals that sampling algorithms can improve the performance of classification algorithms and learning rate is a crucial parameter which can significantly effect on multilayer perceptron.en_US
dc.identifier.citation18
dc.identifier.doi10.1109/COMPSAC.2017.84
dc.identifier.endpage198en_US
dc.identifier.isbn9781538603673
dc.identifier.issn0730-3157
dc.identifier.scopus2-s2.0-85032879036
dc.identifier.scopusqualityQ4
dc.identifier.startpage193en_US
dc.identifier.urihttps://doi.org/10.1109/COMPSAC.2017.84
dc.identifier.urihttps://hdl.handle.net/20.500.14517/479
dc.identifier.wosWOS:000424861900034
dc.institutionauthorYıldırım, Pınar
dc.language.isoen
dc.publisherIeeeen_US
dc.relation.ispartof41st IEEE Annual Computer Software and Applications Conference (COMPSAC) -- JUL 04-08, 2017 -- Torino, ITALYen_US
dc.relation.ispartofseriesProceedings International Computer Software and Applications Conference
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectImbalanced dataen_US
dc.subjectunder samplingen_US
dc.subjectover samplingen_US
dc.subjectresampleen_US
dc.subjectsmoteen_US
dc.subjectspread sub sampleen_US
dc.subjectmultilayer perceptronen_US
dc.subjectchronic kidney diseaseen_US
dc.titleChronic Kidney Disease Prediction on Imbalanced Data by Multilayer Perceptronen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublicationd1a41069-c8b7-49f8-9d07-2597e46bab8c
relation.isAuthorOfPublication.latestForDiscoveryd1a41069-c8b7-49f8-9d07-2597e46bab8c
relation.isOrgUnitOfPublicationc8741b9b-4455-4984-a245-360ece4aa1d9
relation.isOrgUnitOfPublication.latestForDiscoveryc8741b9b-4455-4984-a245-360ece4aa1d9

Files