Utilizing machine learning algorithms for prediction of the rheological behavior of ZnO (50%)-MWCNTs (50%)/ Ethylene glycol (20%)-water (80%) nano-refrigerant

dc.authoridBasem, Ali/0000-0002-6802-9315
dc.authoridBaghoolizadeh, Mohammadreza/0000-0002-3703-0866
dc.authoridSultan, Abbas/0000-0002-7723-5671
dc.authorscopusid57198802382
dc.authorscopusid57338920800
dc.authorscopusid56999952800
dc.authorscopusid57225906716
dc.authorscopusid57422522900
dc.authorscopusid57189038677
dc.authorscopusid23028598900
dc.authorwosidSong, Xiedong/HZL-6016-2023
dc.authorwosidJasim, Dheyaa/GPS-5013-2022
dc.authorwosidBasem, Ali/ABB-3357-2022
dc.authorwosidSultan, Abbas/Q-3047-2019
dc.contributor.authorSong, Xiedong
dc.contributor.authorSalahshour, Soheıl
dc.contributor.authorAlizadeh, As'ad
dc.contributor.authorBasem, Ali
dc.contributor.authorJasim, Dheyaa J.
dc.contributor.authorSultan, Abbas J.
dc.contributor.authorPiromradian, Mostafa
dc.date.accessioned2024-09-11T07:40:20Z
dc.date.available2024-09-11T07:40:20Z
dc.date.issued2024
dc.departmentOkan Universityen_US
dc.department-temp[Song, Xiedong] JiNing Univ, Sch Comp Sci & Engn, JiNing 273155, Peoples R China; [Song, Xiedong] Inner Mongolia Univ Finance & Econ, Sch Comp Informat Management, Hohhot 010000, Peoples R China; [Baghoolizadeh, Mohammadreza] Shahrekord Univ, Dept Mech Engn, Shahrekord 8818634141, Iran; [Alizadeh, As'ad] Cihan Univ Erbil, Coll Engn, Dept Civil Engn, Erbil, Iraq; [Jasim, Dheyaa J.] Al Amarah Univ Coll, Dept Petr Engn, Maysan, Iraq; [Basem, Ali] Warith Al Anbiyaa Univ, Fac Engn, Karbala 56001, Iraq; [Sultan, Abbas J.] Univ Technol Iraq, Dept Chem Engn, Baghdad, Iraq; [Sultan, Abbas J.] Missouri Univ Sci & Technol, Dept Chem & Biochem Engn, Rolla, MO 65409 USA; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Piromradian, Mostafa] Islamic Azad Univ, Dept Mech Engn, Khomeinishahr Branch, Khomeinishahr, Iranen_US
dc.descriptionBasem, Ali/0000-0002-6802-9315; Baghoolizadeh, Mohammadreza/0000-0002-3703-0866; Sultan, Abbas/0000-0002-7723-5671en_US
dc.description.abstractThis paper aims to explore the utilization of machine learning techniques for the accurate prediction of rheological properties in a specific nanofluid system, ZnO(50 %)-MWCNTs (50 %)/Ethylene glycol (20 %)-water (80 %), designed for nano-refrigeration applications. The effective manipulation of the rheological behavior of nanofluids is pivotal for enhancing their heat transfer efficiency and overall performance. By harnessing the predictive power of machine learning, this study endeavors to unravel the intricate relationships governing the rheological characteristics of the nano-refrigerant, ultimately contributing to the development of advanced cooling solutions. The obtained results show that pnf of ZnO(50%)-MWCNTs (50%)/ Ethylene glycol(20%)-water (80%) nano-refrigerant is little affected by T, and even when T varies, this result does not alter much. Also, the lowest pnf occurs when it has the highest temperature and the lowest gamma and m. Finally, it was concluded that the best algorithm in terms of the Taylor diagram for pnf output is the MPR algorithm and the worst is the ECR algorithm and the pattern of gamma changes shows that the ideal value of gamma is the biggest when pnf levels fall in tandem with their growth.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citation1
dc.identifier.doi10.1016/j.icheatmasstransfer.2024.107634
dc.identifier.issn0735-1933
dc.identifier.issn1879-0178
dc.identifier.scopus2-s2.0-85194252702
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.icheatmasstransfer.2024.107634
dc.identifier.urihttps://hdl.handle.net/20.500.14517/6194
dc.identifier.volume156en_US
dc.identifier.wosWOS:001246728700003
dc.identifier.wosqualityQ1
dc.institutionauthorSalahshour S.
dc.language.isoen
dc.publisherPergamon-elsevier Science Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMachine learning algorithmsen_US
dc.subjectRheological behavioren_US
dc.subjectNano -refrigeranten_US
dc.titleUtilizing machine learning algorithms for prediction of the rheological behavior of ZnO (50%)-MWCNTs (50%)/ Ethylene glycol (20%)-water (80%) nano-refrigeranten_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf5ba517c-75fb-4260-af62-01c5f5912f3d
relation.isAuthorOfPublication.latestForDiscoveryf5ba517c-75fb-4260-af62-01c5f5912f3d

Files