Utilizing machine learning algorithms for prediction of the rheological behavior of ZnO (50%)-MWCNTs (50%)/ Ethylene glycol (20%)-water (80%) nano-refrigerant

dc.authorid Basem, Ali/0000-0002-6802-9315
dc.authorid Baghoolizadeh, Mohammadreza/0000-0002-3703-0866
dc.authorid Sultan, Abbas/0000-0002-7723-5671
dc.authorscopusid 57198802382
dc.authorscopusid 57338920800
dc.authorscopusid 56999952800
dc.authorscopusid 57225906716
dc.authorscopusid 57422522900
dc.authorscopusid 57189038677
dc.authorscopusid 23028598900
dc.authorwosid Song, Xiedong/HZL-6016-2023
dc.authorwosid Jasim, Dheyaa/GPS-5013-2022
dc.authorwosid Basem, Ali/ABB-3357-2022
dc.authorwosid Sultan, Abbas/Q-3047-2019
dc.contributor.author Song, Xiedong
dc.contributor.author Baghoolizadeh, Mohammadreza
dc.contributor.author Alizadeh, As'ad
dc.contributor.author Basem, Ali
dc.contributor.author Jasim, Dheyaa J.
dc.contributor.author Sultan, Abbas J.
dc.contributor.author Piromradian, Mostafa
dc.date.accessioned 2024-09-11T07:40:20Z
dc.date.available 2024-09-11T07:40:20Z
dc.date.issued 2024
dc.department Okan University en_US
dc.department-temp [Song, Xiedong] JiNing Univ, Sch Comp Sci & Engn, JiNing 273155, Peoples R China; [Song, Xiedong] Inner Mongolia Univ Finance & Econ, Sch Comp Informat Management, Hohhot 010000, Peoples R China; [Baghoolizadeh, Mohammadreza] Shahrekord Univ, Dept Mech Engn, Shahrekord 8818634141, Iran; [Alizadeh, As'ad] Cihan Univ Erbil, Coll Engn, Dept Civil Engn, Erbil, Iraq; [Jasim, Dheyaa J.] Al Amarah Univ Coll, Dept Petr Engn, Maysan, Iraq; [Basem, Ali] Warith Al Anbiyaa Univ, Fac Engn, Karbala 56001, Iraq; [Sultan, Abbas J.] Univ Technol Iraq, Dept Chem Engn, Baghdad, Iraq; [Sultan, Abbas J.] Missouri Univ Sci & Technol, Dept Chem & Biochem Engn, Rolla, MO 65409 USA; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Piromradian, Mostafa] Islamic Azad Univ, Dept Mech Engn, Khomeinishahr Branch, Khomeinishahr, Iran en_US
dc.description Basem, Ali/0000-0002-6802-9315; Baghoolizadeh, Mohammadreza/0000-0002-3703-0866; Sultan, Abbas/0000-0002-7723-5671 en_US
dc.description.abstract This paper aims to explore the utilization of machine learning techniques for the accurate prediction of rheological properties in a specific nanofluid system, ZnO(50 %)-MWCNTs (50 %)/Ethylene glycol (20 %)-water (80 %), designed for nano-refrigeration applications. The effective manipulation of the rheological behavior of nanofluids is pivotal for enhancing their heat transfer efficiency and overall performance. By harnessing the predictive power of machine learning, this study endeavors to unravel the intricate relationships governing the rheological characteristics of the nano-refrigerant, ultimately contributing to the development of advanced cooling solutions. The obtained results show that pnf of ZnO(50%)-MWCNTs (50%)/ Ethylene glycol(20%)-water (80%) nano-refrigerant is little affected by T, and even when T varies, this result does not alter much. Also, the lowest pnf occurs when it has the highest temperature and the lowest gamma and m. Finally, it was concluded that the best algorithm in terms of the Taylor diagram for pnf output is the MPR algorithm and the worst is the ECR algorithm and the pattern of gamma changes shows that the ideal value of gamma is the biggest when pnf levels fall in tandem with their growth. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citationcount 1
dc.identifier.doi 10.1016/j.icheatmasstransfer.2024.107634
dc.identifier.issn 0735-1933
dc.identifier.issn 1879-0178
dc.identifier.scopus 2-s2.0-85194252702
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.icheatmasstransfer.2024.107634
dc.identifier.uri https://hdl.handle.net/20.500.14517/6194
dc.identifier.volume 156 en_US
dc.identifier.wos WOS:001246728700003
dc.identifier.wosquality Q1
dc.institutionauthor Salahshour S.
dc.language.iso en
dc.publisher Pergamon-elsevier Science Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 7
dc.subject Machine learning algorithms en_US
dc.subject Rheological behavior en_US
dc.subject Nano -refrigerant en_US
dc.title Utilizing machine learning algorithms for prediction of the rheological behavior of ZnO (50%)-MWCNTs (50%)/ Ethylene glycol (20%)-water (80%) nano-refrigerant en_US
dc.type Article en_US
dc.wos.citedbyCount 3

Files