Utilizing machine learning algorithms for prediction of the rheological behavior of ZnO (50%)-MWCNTs (50%)/ Ethylene glycol (20%)-water (80%) nano-refrigerant
dc.authorid | Basem, Ali/0000-0002-6802-9315 | |
dc.authorid | Baghoolizadeh, Mohammadreza/0000-0002-3703-0866 | |
dc.authorid | Sultan, Abbas/0000-0002-7723-5671 | |
dc.authorscopusid | 57198802382 | |
dc.authorscopusid | 57338920800 | |
dc.authorscopusid | 56999952800 | |
dc.authorscopusid | 57225906716 | |
dc.authorscopusid | 57422522900 | |
dc.authorscopusid | 57189038677 | |
dc.authorscopusid | 23028598900 | |
dc.authorwosid | Song, Xiedong/HZL-6016-2023 | |
dc.authorwosid | Jasim, Dheyaa/GPS-5013-2022 | |
dc.authorwosid | Basem, Ali/ABB-3357-2022 | |
dc.authorwosid | Sultan, Abbas/Q-3047-2019 | |
dc.contributor.author | Song, Xiedong | |
dc.contributor.author | Salahshour, Soheıl | |
dc.contributor.author | Alizadeh, As'ad | |
dc.contributor.author | Basem, Ali | |
dc.contributor.author | Jasim, Dheyaa J. | |
dc.contributor.author | Sultan, Abbas J. | |
dc.contributor.author | Piromradian, Mostafa | |
dc.date.accessioned | 2024-09-11T07:40:20Z | |
dc.date.available | 2024-09-11T07:40:20Z | |
dc.date.issued | 2024 | |
dc.department | Okan University | en_US |
dc.department-temp | [Song, Xiedong] JiNing Univ, Sch Comp Sci & Engn, JiNing 273155, Peoples R China; [Song, Xiedong] Inner Mongolia Univ Finance & Econ, Sch Comp Informat Management, Hohhot 010000, Peoples R China; [Baghoolizadeh, Mohammadreza] Shahrekord Univ, Dept Mech Engn, Shahrekord 8818634141, Iran; [Alizadeh, As'ad] Cihan Univ Erbil, Coll Engn, Dept Civil Engn, Erbil, Iraq; [Jasim, Dheyaa J.] Al Amarah Univ Coll, Dept Petr Engn, Maysan, Iraq; [Basem, Ali] Warith Al Anbiyaa Univ, Fac Engn, Karbala 56001, Iraq; [Sultan, Abbas J.] Univ Technol Iraq, Dept Chem Engn, Baghdad, Iraq; [Sultan, Abbas J.] Missouri Univ Sci & Technol, Dept Chem & Biochem Engn, Rolla, MO 65409 USA; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Piromradian, Mostafa] Islamic Azad Univ, Dept Mech Engn, Khomeinishahr Branch, Khomeinishahr, Iran | en_US |
dc.description | Basem, Ali/0000-0002-6802-9315; Baghoolizadeh, Mohammadreza/0000-0002-3703-0866; Sultan, Abbas/0000-0002-7723-5671 | en_US |
dc.description.abstract | This paper aims to explore the utilization of machine learning techniques for the accurate prediction of rheological properties in a specific nanofluid system, ZnO(50 %)-MWCNTs (50 %)/Ethylene glycol (20 %)-water (80 %), designed for nano-refrigeration applications. The effective manipulation of the rheological behavior of nanofluids is pivotal for enhancing their heat transfer efficiency and overall performance. By harnessing the predictive power of machine learning, this study endeavors to unravel the intricate relationships governing the rheological characteristics of the nano-refrigerant, ultimately contributing to the development of advanced cooling solutions. The obtained results show that pnf of ZnO(50%)-MWCNTs (50%)/ Ethylene glycol(20%)-water (80%) nano-refrigerant is little affected by T, and even when T varies, this result does not alter much. Also, the lowest pnf occurs when it has the highest temperature and the lowest gamma and m. Finally, it was concluded that the best algorithm in terms of the Taylor diagram for pnf output is the MPR algorithm and the worst is the ECR algorithm and the pattern of gamma changes shows that the ideal value of gamma is the biggest when pnf levels fall in tandem with their growth. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | 1 | |
dc.identifier.doi | 10.1016/j.icheatmasstransfer.2024.107634 | |
dc.identifier.issn | 0735-1933 | |
dc.identifier.issn | 1879-0178 | |
dc.identifier.scopus | 2-s2.0-85194252702 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://doi.org/10.1016/j.icheatmasstransfer.2024.107634 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14517/6194 | |
dc.identifier.volume | 156 | en_US |
dc.identifier.wos | WOS:001246728700003 | |
dc.identifier.wosquality | Q1 | |
dc.institutionauthor | Salahshour S. | |
dc.language.iso | en | |
dc.publisher | Pergamon-elsevier Science Ltd | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Machine learning algorithms | en_US |
dc.subject | Rheological behavior | en_US |
dc.subject | Nano -refrigerant | en_US |
dc.title | Utilizing machine learning algorithms for prediction of the rheological behavior of ZnO (50%)-MWCNTs (50%)/ Ethylene glycol (20%)-water (80%) nano-refrigerant | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f5ba517c-75fb-4260-af62-01c5f5912f3d | |
relation.isAuthorOfPublication.latestForDiscovery | f5ba517c-75fb-4260-af62-01c5f5912f3d |