A variable-order fractional mathematical model for the strategy to combat the atmospheric level of carbon dioxide
No Thumbnail Available
Date
2024
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Heidelberg
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
In this article, we define a nonlinear model for exploring the strategy of combating the atmospheric level of carbon dioxide (CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}) considering development activities in terms of variable-order Liouville-Caputo fractional derivatives. There are two types of variable-order Liouville-Caputo fractional derivatives used to derive the proposed model. We prove the existence and uniqueness of the solution for the given model using fixed-point theory. The numerical solution is derived by using a recently proposed predictor-corrector scheme. We perform several graphical simulations to describe the outcomes of the given model. The outputs performed at various fractional-order values provide novel findings to understand how to combat atmospheric CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}. A novel variable-order fractional model that captures memory effects in the proposed dynamics, along with a recent numerical methodology, are the key features of this study. The simulation analysis shows that the leafy tree plantation on the excess land will be efficient against atmospheric CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}.
Description
Kumar, Pushpendra/0000-0002-7755-2837
ORCID
Keywords
Carbon dioxide, Mathematical modeling, Liouville-Caputo fractional derivatives, Existence and uniqueness, Predictor-corrector method
Turkish CoHE Thesis Center URL
Fields of Science
Citation
0
WoS Q
Scopus Q
Q1