Using different Heuristic strategies and an adaptive Neuro-Fuzzy inference system for multi-objective optimization of Hybrid Nanofluid to provide an efficient thermal behavior

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Abstract

The importance of multi-objective optimization in hybrid nanofluid research lies in its wide-ranging applications across fields such as microelectronics, aerospace, and renewable energy. These specialized fluids hold the potential to elevate the performance and efficiency of diverse systems through enhanced heat transfer capabilities. This research endeavor is centered around optimizing a hybrid nanofluid composed of Silicon Oxide-MWCNTAlumina/Water by leveraging a mix of heuristic approaches and an adaptive neuro-fuzzy inference system. To this end, the most influential set of input parameters has been identified using four state-of-the-art algorithms: Non-dominated Genetic Algorithm, multi-objective particle swarm optimization, Strength Pareto Evolutionary Algorithm 2, and Pareto Envelope-based Selection Algorithm 2. The goal of the optimization process is to modify the temperature (T = 20 degrees C to 60 degrees C) and the volume fraction of nanoparticles (SVF=0.1 % to 0.5 %). Finding the optimal combination of these parameters that results in the hybrid nanofluid with the maximum thermal conductivity (knf) and the lowest dynamic viscosity is the main objective. The findings of this research have the potential to drastically improve the performance of systems in a variety of applications and to change the creation of sophisticated, high-efficiency heat transfer fluids.

Description

Cajamarca, Karina/0009-0009-3465-302X

Keywords

Multi-objective optimization, Heuristic strategies, Hybrid nanofluid, Thermal conductivity, Dynamic viscosity, Anfis

Turkish CoHE Thesis Center URL

Fields of Science

Citation

0

WoS Q

Q1

Scopus Q

Q1

Source

Volume

86

Issue

Start Page

End Page