Using different Heuristic strategies and an adaptive Neuro-Fuzzy inference system for multi-objective optimization of Hybrid Nanofluid to provide an efficient thermal behavior
dc.authorid | Cajamarca, Karina/0009-0009-3465-302X | |
dc.authorscopusid | 58955378900 | |
dc.authorscopusid | 58860356700 | |
dc.authorscopusid | 58955011600 | |
dc.authorscopusid | 57422522900 | |
dc.authorscopusid | 58292177700 | |
dc.authorscopusid | 58955011700 | |
dc.authorscopusid | 58954452700 | |
dc.contributor.author | Wang, Zhe | |
dc.contributor.author | Salahshour, Soheıl | |
dc.contributor.author | Kazim, Khudhaier J. | |
dc.contributor.author | Basem, Ali | |
dc.contributor.author | Al-fanhrawi, Halah Jawad | |
dc.contributor.author | Dacto, Karina Elizabeth Cajamarca | |
dc.contributor.author | Eftekhari, S. Ali | |
dc.date.accessioned | 2024-05-25T11:37:28Z | |
dc.date.available | 2024-05-25T11:37:28Z | |
dc.date.issued | 2024 | |
dc.department | Okan University | en_US |
dc.department-temp | [Wang, Zhe] Natl Ctr Nanosci & Technol, Beijing 100190, Peoples R China; [Wang, Zhe] GBA Natl Inst Nanotechnol Innovat, Guangzhou 510700, Guangdong, Peoples R China; [Shami, Hayder Oleiwi] Al Amarah Univ Coll, Dept Accounting, Maysan, Iraq; [Shami, Hayder Oleiwi] Univ Misan, Coll Adm & Econ, Dept Econ, Amarah, Iraq; [Kazim, Khudhaier J.] Madenat Alelem Univ Coll, Dept Comp Engn Tech, Baghdad 10006, Iraq; [Basem, Ali] Warith Al Anbiyaa Univ, Fac Engn, Karbala 56001, Iraq; [Al-fanhrawi, Halah Jawad] Al Mustaqbal Univ, Res & Studies Unit, Babylon 51001, Iraq; [Dacto, Karina Elizabeth Cajamarca] Univ Nacl Chimborazo, Riobamba 060501, Chimborazo, Ecuador; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Khajehkhabaz, Mohammad; Eftekhari, S. Ali] Islamic Azad Univ, Dept Mech Engn, Khomeinishahr Branch, Khomeinishahr, Iran | en_US |
dc.description | Cajamarca, Karina/0009-0009-3465-302X | en_US |
dc.description.abstract | The importance of multi-objective optimization in hybrid nanofluid research lies in its wide-ranging applications across fields such as microelectronics, aerospace, and renewable energy. These specialized fluids hold the potential to elevate the performance and efficiency of diverse systems through enhanced heat transfer capabilities. This research endeavor is centered around optimizing a hybrid nanofluid composed of Silicon Oxide-MWCNTAlumina/Water by leveraging a mix of heuristic approaches and an adaptive neuro-fuzzy inference system. To this end, the most influential set of input parameters has been identified using four state-of-the-art algorithms: Non-dominated Genetic Algorithm, multi-objective particle swarm optimization, Strength Pareto Evolutionary Algorithm 2, and Pareto Envelope-based Selection Algorithm 2. The goal of the optimization process is to modify the temperature (T = 20 degrees C to 60 degrees C) and the volume fraction of nanoparticles (SVF=0.1 % to 0.5 %). Finding the optimal combination of these parameters that results in the hybrid nanofluid with the maximum thermal conductivity (knf) and the lowest dynamic viscosity is the main objective. The findings of this research have the potential to drastically improve the performance of systems in a variety of applications and to change the creation of sophisticated, high-efficiency heat transfer fluids. | en_US |
dc.description.sponsorship | Open Fund Project of Key Laboratory of Eco-geochemistry of Ministry of Natural Resources of China [ZSDHJJ201803] | en_US |
dc.description.sponsorship | Open Fund Project of Key Laboratory of Eco-geochemistry of Ministry of Natural Resources of China (ZSDHJJ201803) | en_US |
dc.identifier.citation | 0 | |
dc.identifier.doi | 10.1016/j.swevo.2024.101536 | |
dc.identifier.issn | 2210-6502 | |
dc.identifier.issn | 2210-6510 | |
dc.identifier.scopus | 2-s2.0-85188598281 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://doi.org/10.1016/j.swevo.2024.101536 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14517/1172 | |
dc.identifier.volume | 86 | en_US |
dc.identifier.wos | WOS:001220254400001 | |
dc.identifier.wosquality | Q1 | |
dc.institutionauthor | Salahshour S. | |
dc.language.iso | en | |
dc.publisher | Elsevier | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Multi-objective optimization | en_US |
dc.subject | Heuristic strategies | en_US |
dc.subject | Hybrid nanofluid | en_US |
dc.subject | Thermal conductivity | en_US |
dc.subject | Dynamic viscosity | en_US |
dc.subject | Anfis | en_US |
dc.title | Using different Heuristic strategies and an adaptive Neuro-Fuzzy inference system for multi-objective optimization of Hybrid Nanofluid to provide an efficient thermal behavior | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f5ba517c-75fb-4260-af62-01c5f5912f3d | |
relation.isAuthorOfPublication.latestForDiscovery | f5ba517c-75fb-4260-af62-01c5f5912f3d |