Enhancing solar energy conversion efficiency: Thermophysical property predicting of MXene/Graphene hybrid nanofluids via bayesian-optimized artificial neural networks
dc.authorscopusid | 57225906716 | |
dc.authorscopusid | 58112691900 | |
dc.authorscopusid | 56999952800 | |
dc.authorscopusid | 56047171100 | |
dc.authorscopusid | 57404280300 | |
dc.authorscopusid | 55310783100 | |
dc.authorscopusid | 23028598900 | |
dc.authorwosid | Jasim, Dheyaa/GPS-5013-2022 | |
dc.authorwosid | Sharma, Kamal/AAL-3794-2020 | |
dc.authorwosid | Ahmed, Mohsen/ABF-9207-2021 | |
dc.authorwosid | Rajab, Husam/AAI-8991-2020 | |
dc.contributor.author | Jasim, Dheyaa J. | |
dc.contributor.author | Rajab, Husam | |
dc.contributor.author | Alizadeh, As'ad | |
dc.contributor.author | Sharma, Kamal | |
dc.contributor.author | Ahmed, Mohsen | |
dc.contributor.author | Kassim, Murizah | |
dc.contributor.author | Maleki, Hamid | |
dc.date.accessioned | 2024-10-15T20:20:23Z | |
dc.date.available | 2024-10-15T20:20:23Z | |
dc.date.issued | 2024 | |
dc.department | Okan University | en_US |
dc.department-temp | [Jasim, Dheyaa J.] Al Amarah Univ Coll, Dept Petr Engn, Maysan, Iraq; [Rajab, Husam] Alasala Univ, Coll Engn, Mech Engn Dept, King Fahad Bin Abdulaziz Rd,POB 12666, Dammam 31483, Saudi Arabia; [Alizadeh, As'ad] Cihan Univ Erbil, Coll Engn, Dept Civil Engn, Erbil, Iraq; [Sharma, Kamal] GLA Univ, Inst Engn & Technol, Mathura 281406, UP, India; [Ahmed, Mohsen] Imam Abdulrahman Bin Faisal Univ, POB 1982, Dammam 31441, Eastern Provinc, Saudi Arabia; [Kassim, Murizah] Univ Teknol MARA, Inst Big Data Analyt & Artificial Intelligence IBD, Shah Alam 40450, Selangor, Malaysia; [Kassim, Murizah] Univ Teknol MARA, Coll Engn, Sch Elect Engn, Shah Alam 40450, Selangor, Malaysia; [AbdulAmeer, S.] Univ Babylon, Coll Engn, Dept Automobile Engn, Al Musayab, Iraq; [AbdulAmeer, S.] Ahl Al Bayt Univ, Kerbala, Iraq; [Alwan, Adil A.] Natl Univ Sci & Technol, Coll Tech Engn, Dhi Qar 64001, Iraq; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Maleki, Hamid] Renewable Energy Res Grp, Esfahan, Iran | en_US |
dc.description.abstract | Accurately predicting thermo-physical properties (TPPs) of MXene/graphene-based nanofluids is crucial for photovoltaic/thermal solar systems, driving focused research on developing precise TPP predictive models. This study presents optimized multi-layer perceptron neural network (MLPNN) models, leveraging Bayesian optimization to refine architectural and training hyperparameters, including hidden layers, neurons, activation functions, standardization, and regularization terms. A comparative analysis of Bayesian acquisition functions-the probability of improvement (POI), lower confidence bound (LCB), expected improvement (EI), expected improvement plus (EIP), expected improvement per second plus (EIPSP), and expected improvement per second (EIPS)-demonstrated that the POI-MLPNN achieves the most accurate results, as evidenced by the lowest MAPE of 1.0923 % and exceptional consistency with an R-value of 0.99811. The EI-MLPNN and EIP-MLPNN models recorded the same outputs. The EI/EIP-MLPNN (R = 0.99668) model excels in consistency over LCB-MLPNN (R = 0.99529) and EIPSP-MLPNN (R = 0.99667). The optimized models offer a reliable, cost-efficient alternate for experimental and computational TPP analyses. Leveraging insights from these models enables better control over nanofluid TPPs in solar systems, enhancing energy conversion efficiency. | en_US |
dc.description.woscitationindex | Emerging Sources Citation Index | |
dc.identifier.citation | 0 | |
dc.identifier.doi | 10.1016/j.rineng.2024.102858 | |
dc.identifier.issn | 2590-1230 | |
dc.identifier.scopus | 2-s2.0-85203523133 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://doi.org/10.1016/j.rineng.2024.102858 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14517/6574 | |
dc.identifier.volume | 24 | en_US |
dc.identifier.wos | WOS:001314576900001 | |
dc.language.iso | en | |
dc.publisher | Elsevier | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Solar energy conversion | en_US |
dc.subject | PVT solar panels | en_US |
dc.subject | Artificial neural network | en_US |
dc.subject | Machine learning | en_US |
dc.subject | MXene | en_US |
dc.subject | Graphene | en_US |
dc.title | Enhancing solar energy conversion efficiency: Thermophysical property predicting of MXene/Graphene hybrid nanofluids via bayesian-optimized artificial neural networks | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |