Fourier-Galerkin domain truncation method for Stokes' first problem with Oldroyd four-constant liquid
No Thumbnail Available
Date
2008
Journal Title
Journal ISSN
Volume Title
Publisher
Pergamon-elsevier Science Ltd
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Using the Fourier-Galerkin method with domain truncation strategy, Stokes' first problem for Oldroyd four-constant liquid on a semi-infinite interval is studied. It is shown that the Fourier-Galerkin approximations are convergent on the bounded interval. Moreover, an efficient and accurate algorithm based on the Fourier-Galerkin approximations is developed and implemented in solving the differential equations related to the present problem. Also, the effects of non-Newtonian parameters on the flow characteristics are obtained and analyzed. The method developed here is so general that it can be used to study the mathematical models that involve the flow of viscous fluids with shear rate-dependent properties: For example, models dealing with polymer processing, tribology & lubrication, and food processing. (C) 2007 Elsevier Ltd. All rights reserved.
Description
Keywords
Fourier-Galerkin method, Stokes' first problem, Oldroyd four-constant model, discontinuous boundary condition, quasilinear parabolic equation, regularized boundary layer function
Turkish CoHE Thesis Center URL
Fields of Science
Citation
2
WoS Q
Q1
Scopus Q
Q1
Source
Volume
55
Issue
11
Start Page
2452
End Page
2457