Optimization of thermophysical properties of nanofluids using a hybrid procedure based on machine learning, multi-objective optimization, and multi-criteria decision-making

dc.authoridZhang, Tao/0000-0002-0134-3094
dc.authoridManafi Khajeh Pasha, Anahita/0000-0002-6235-3202
dc.authorscopusid57216092176
dc.authorscopusid57209368418
dc.authorscopusid22136195900
dc.authorscopusid57225906716
dc.authorscopusid57222062476
dc.authorscopusid57198301674
dc.authorscopusid23028598900
dc.authorwosidZhang, Tao/ACM-0777-2022
dc.contributor.authorZhang, Tao
dc.contributor.authorSalahshour, Soheıl
dc.contributor.authorSajadi, S. Mohammad
dc.contributor.authorJasim, Dheyaa J.
dc.contributor.authorNasajpour-Esfahani, Navid
dc.contributor.authorMaleki, Hamid
dc.contributor.authorBaghaei, Sh.
dc.date.accessioned2024-05-25T11:37:27Z
dc.date.available2024-05-25T11:37:27Z
dc.date.issued2024
dc.departmentOkan Universityen_US
dc.department-temp[Zhang, Tao] China Agr Univ, Coll Resources & Environm Sci, Beijing Key Lab Farmland Soil Pollut Prevent & Rem, Key Lab Plant Soil Interact,Minist Educ, Beijing 100193, Peoples R China; [Pasha, Anahita Manafi Khajeh] Urmia Univ Med Sci, Fac Dent, Dept Periodont, Orumiyeh, Iran; [Sajadi, S. Mohammad] Cihan Univ Erbil, Dept Nutr, Erbil, Kurdistan, Iraq; [Jasim, Dheyaa J.] Al Amarah Univ Coll, Dept Petr Engn, Maysan, Iraq; [Nasajpour-Esfahani, Navid] Georgia Inst Technol, Dept Mat Sci & Engn, Atlanta, GA 30332 USA; [Maleki, Hamid; Baghaei, Sh.] Isfahan Univ Technol, Dept Mech Engn, Esfahan 8415683111, Iran; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanonen_US
dc.descriptionZhang, Tao/0000-0002-0134-3094; Manafi Khajeh Pasha, Anahita/0000-0002-6235-3202en_US
dc.description.abstractThe rheological and thermal behavior of nanofluids in real-world scenarios is significantly affected by their thermophysical properties (TPPs). Therefore, optimizing TPPs can remarkably improve the performance of nanofluids. In this regard, in the present study, a hybrid strategy is proposed that combines machine learning (ML), multi-objective optimization (MOO), and multi-criteria decision-making (MCDM) to select optimal parameters for water-based multi-walled carbon nanotubes (MWCNTs)-oxide hybrid nanofluids. In the first step, four critical TPPs, including density ratio (DR), viscosity ratio (VR), specific heat capacity ratio (SHCR), and thermal conductivity ratio (TCR), are modeled using two efficient ML techniques, the group method of data handling neural network (GMDH-NN) and combinatorial (COMBI) algorithm. In the next step, the superior models are subjected to a four-objective optimization by the well-known non-dominated sorting genetic algorithm II (NSGA-II), which aims to minimize DR/VR and maximize SHCR/TCR. This study considers volume fraction (VF), oxide nanoparticle (NP) type, and system temperature as optimization variables. In the final step, two prominent MCDM techniques, TOPSIS and VIKOR, were used to identify the desirable optimal points from the Pareto fronts generated by the MOO algorithm. ML results reveal the COMBI algorithm's superior reliability in accurately modeling various TPPs. The pattern of Pareto fronts for all oxide-NPs indicated that over one-third of the optimal points have a VF > 1.5 %. On the other hand, the distribution of optimal points across different temperature ranges varied significantly depending on the type of oxide-NPs. For Al2O3-based nanofluid, around 90 % of the optimal points were within 40-50 degrees C. Conversely, for nanofluids containing CeO2 NPs, only approximately 24 % of the optimal points were found within the same temperature range. Considering diverse scenarios for weighting TPPs in the MCDM process implied that combining CeO2/ZnO oxide-NPs with MWCNTs in water-based nanofluids is highly effective across various real-world applications.en_US
dc.description.sponsorshipNational Key Tech- nology Research and Development Program of China [2023YFE0104700]; National Natural Science Foundation of China [31401944]en_US
dc.description.sponsorshipThe research was sustained by a grant from the National Key Tech- nology Research and Development Program of China [Grant number 2023YFE0104700] , the National Natural Science Foundation of China [Grant Number 31401944] .en_US
dc.identifier.citation1
dc.identifier.doi10.1016/j.cej.2024.150059
dc.identifier.issn1385-8947
dc.identifier.issn1873-3212
dc.identifier.scopus2-s2.0-85186334090
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.cej.2024.150059
dc.identifier.urihttps://hdl.handle.net/20.500.14517/1169
dc.identifier.volume485en_US
dc.identifier.wosWOS:001208917000001
dc.identifier.wosqualityQ1
dc.institutionauthorSalahshour S.
dc.language.isoen
dc.publisherElsevier Science Saen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDynamic viscosityen_US
dc.subjectHybrid nanofluiden_US
dc.subjectMachine learningen_US
dc.subjectMulti -criteria decision -makingen_US
dc.subjectMulti -objective optimizationen_US
dc.subjectThermal conductivityen_US
dc.titleOptimization of thermophysical properties of nanofluids using a hybrid procedure based on machine learning, multi-objective optimization, and multi-criteria decision-makingen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf5ba517c-75fb-4260-af62-01c5f5912f3d
relation.isAuthorOfPublication.latestForDiscoveryf5ba517c-75fb-4260-af62-01c5f5912f3d

Files