An advanced scheme based on artificial intelligence technique for solving nonlinear riccati systems

dc.authoridAhmadian, Ali/0000-0002-0106-7050
dc.authorscopusid37066896900
dc.authorscopusid55670963500
dc.authorscopusid55602202100
dc.authorscopusid15837562800
dc.authorwosidSenu, Norazak/G-2776-2014
dc.authorwosidAhmadian, Ali/N-3697-2015
dc.contributor.authorAdmon, Mohd Rashid
dc.contributor.authorSenu, Norazak
dc.contributor.authorAhmadian, Ali
dc.contributor.authorMajid, Zanariah Abdul
dc.date.accessioned2024-09-11T07:40:59Z
dc.date.available2024-09-11T07:40:59Z
dc.date.issued2024
dc.departmentOkan Universityen_US
dc.department-temp[Admon, Mohd Rashid; Senu, Norazak; Majid, Zanariah Abdul] Univ Putra Malaysia, Inst Math Res, Serdang 43400, Selangor, Malaysia; [Admon, Mohd Rashid] Univ Teknol Malaysia, Fac Sci, Dept Math Sci, Johor Baharu, Johor, Malaysia; [Ahmadian, Ali] Mediterranea Univ Reggio Calabria, Decis Lab, Reggio Di Calabria, Italy; [Ahmadian, Ali] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiyeen_US
dc.descriptionAhmadian, Ali/0000-0002-0106-7050en_US
dc.description.abstractRecently, one artificial intelligence technique, known as artificial neural network (ANN), has brought advanced development to the arena of mathematical research. It competes effectively with other traditional methods in providing accurate solutions for fractional differential equations (FDEs). This work aims to implement a feedforward ANN with two hidden layers to solve nonlinear systems based on the fractional Riccati differential equation (FRDE). The network parameters are trained using the Adam optimization method with the aid of automatic differentiation. A vectorization algorithm is designated for the selected step to make the computation process more efficient. Two different initial value problems in integer-order derivatives and fractional-order derivatives are discussed. Numerical results demonstrate that the proposed method not only closely matches the exact solutions and reference solutions but also is more accurate than other existing methods.en_US
dc.description.sponsorshipFundamental Research Grant Scheme [FRGS/1/2022/STG06/UPM/02/2]; Malaysia Ministry of Education and Fellow Schemeen_US
dc.description.sponsorshipThis research was funded by the Fundamental Research Grant Scheme (Ref. No. FRGS/1/2022/STG06/UPM/02/2) awarded by the Malaysia Ministry of Education and Fellow Scheme under Universiti Teknologi Malaysia.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citation0
dc.identifier.doi10.1007/s40314-024-02865-6
dc.identifier.issn2238-3603
dc.identifier.issn1807-0302
dc.identifier.issue6en_US
dc.identifier.scopus2-s2.0-85200907876
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1007/s40314-024-02865-6
dc.identifier.urihttps://hdl.handle.net/20.500.14517/6223
dc.identifier.volume43en_US
dc.identifier.wosWOS:001286544500001
dc.identifier.wosqualityQ1
dc.language.isoen
dc.publisherSpringer Heidelbergen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial neural networken_US
dc.subjectFractional riccati differential equationen_US
dc.subjectAdam optimization methoden_US
dc.subjectVectorization algorithmen_US
dc.titleAn advanced scheme based on artificial intelligence technique for solving nonlinear riccati systemsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files