An advanced scheme based on artificial intelligence technique for solving nonlinear riccati systems

dc.authorid Ahmadian, Ali/0000-0002-0106-7050
dc.authorscopusid 37066896900
dc.authorscopusid 55670963500
dc.authorscopusid 55602202100
dc.authorscopusid 15837562800
dc.authorwosid Senu, Norazak/G-2776-2014
dc.authorwosid Ahmadian, Ali/N-3697-2015
dc.contributor.author Admon, Mohd Rashid
dc.contributor.author Senu, Norazak
dc.contributor.author Ahmadian, Ali
dc.contributor.author Majid, Zanariah Abdul
dc.date.accessioned 2024-09-11T07:40:59Z
dc.date.available 2024-09-11T07:40:59Z
dc.date.issued 2024
dc.department Okan University en_US
dc.department-temp [Admon, Mohd Rashid; Senu, Norazak; Majid, Zanariah Abdul] Univ Putra Malaysia, Inst Math Res, Serdang 43400, Selangor, Malaysia; [Admon, Mohd Rashid] Univ Teknol Malaysia, Fac Sci, Dept Math Sci, Johor Baharu, Johor, Malaysia; [Ahmadian, Ali] Mediterranea Univ Reggio Calabria, Decis Lab, Reggio Di Calabria, Italy; [Ahmadian, Ali] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye en_US
dc.description Ahmadian, Ali/0000-0002-0106-7050 en_US
dc.description.abstract Recently, one artificial intelligence technique, known as artificial neural network (ANN), has brought advanced development to the arena of mathematical research. It competes effectively with other traditional methods in providing accurate solutions for fractional differential equations (FDEs). This work aims to implement a feedforward ANN with two hidden layers to solve nonlinear systems based on the fractional Riccati differential equation (FRDE). The network parameters are trained using the Adam optimization method with the aid of automatic differentiation. A vectorization algorithm is designated for the selected step to make the computation process more efficient. Two different initial value problems in integer-order derivatives and fractional-order derivatives are discussed. Numerical results demonstrate that the proposed method not only closely matches the exact solutions and reference solutions but also is more accurate than other existing methods. en_US
dc.description.sponsorship Fundamental Research Grant Scheme [FRGS/1/2022/STG06/UPM/02/2]; Malaysia Ministry of Education and Fellow Scheme en_US
dc.description.sponsorship This research was funded by the Fundamental Research Grant Scheme (Ref. No. FRGS/1/2022/STG06/UPM/02/2) awarded by the Malaysia Ministry of Education and Fellow Scheme under Universiti Teknologi Malaysia. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citationcount 0
dc.identifier.doi 10.1007/s40314-024-02865-6
dc.identifier.issn 2238-3603
dc.identifier.issn 1807-0302
dc.identifier.issue 6 en_US
dc.identifier.scopus 2-s2.0-85200907876
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1007/s40314-024-02865-6
dc.identifier.uri https://hdl.handle.net/20.500.14517/6223
dc.identifier.volume 43 en_US
dc.identifier.wos WOS:001286544500001
dc.identifier.wosquality Q1
dc.language.iso en
dc.publisher Springer Heidelberg en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject Artificial neural network en_US
dc.subject Fractional riccati differential equation en_US
dc.subject Adam optimization method en_US
dc.subject Vectorization algorithm en_US
dc.title An advanced scheme based on artificial intelligence technique for solving nonlinear riccati systems en_US
dc.type Article en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication

Files