Advancing Micromixing Techniques: the Role of Surface Acoustic Waves and Fluid–structure Interaction in Non-Newtonian Fluids

dc.authorscopusid57340231400
dc.authorscopusid23028598900
dc.authorscopusid36807246100
dc.contributor.authorFaradonbeh, V.R.
dc.contributor.authorSalahshour, S.
dc.contributor.authorToghraie, D.
dc.date.accessioned2025-02-17T18:48:56Z
dc.date.available2025-02-17T18:48:56Z
dc.date.issued2025
dc.departmentOkan Universityen_US
dc.department-tempFaradonbeh V.R., Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran; Salahshour S., Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Türkiye, Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Türkiye, Faculty of Science and Letters, Piri Reis University, Tuzla, Istanbul, Türkiye; Toghraie D., Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iranen_US
dc.description.abstractThis study numerically investigated the enhancement of micromixing efficiency through integrating surface acoustic waves (SAWs) and hyper-elastic channel walls, modeled using a power-law fluid representative of human blood flow. The governing equations are systematically divided into zeroth, first, and second orders based on perturbation theory. This facilitates the development of a fully coupled two-way fluid–structure interaction (FSI) framework implemented via the Arbitrary Lagrangian–Eulerian (ALE) method. The combination of SAWs and hyper-elastic materials demonstrated a marked improvement in mixing efficiency, increasing from 0 to 0.99, alongside a significant reduction in pressure drop within the microchannel. The interaction between SAWs and the deformable walls induces localized instabilities and shear stresses that effectively disrupt the laminar flow, promoting enhanced mixing. The study highlights the critical role of hyper-elastic walls in modulating normal forces on the fluid and reducing pressure drop, offering insights into the interaction between fluid viscosity, acoustic pressure fields, and flow dynamics. These findings provide a framework for designing micromixers with optimized efficiency and reduced channel length, offering practical advancements in microfluidic systems. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citation0
dc.identifier.citationcount0
dc.identifier.doi10.1007/s10404-025-02787-7
dc.identifier.issn1613-4982
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85218171494
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1007/s10404-025-02787-7
dc.identifier.volume29en_US
dc.identifier.wosWOS:001412886500001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofMicrofluidics and Nanofluidicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFluid–Structure Interaction (Fsi)en_US
dc.subjectHyper-Elastic Materialsen_US
dc.subjectMicromixingen_US
dc.subjectPerturbation Theoryen_US
dc.subjectPower-Law Fluid Modelen_US
dc.subjectSurface Acoustic Waves (Saws)en_US
dc.titleAdvancing Micromixing Techniques: the Role of Surface Acoustic Waves and Fluid–structure Interaction in Non-Newtonian Fluidsen_US
dc.typeArticleen_US
dc.wos.citedbyCount0
dspace.entity.typePublication

Files