Redefinition of the energy-momentum operator: motivation and implications

dc.authoridKholmetskii, Alexander/0000-0002-5182-315X
dc.authorscopusid7004016669
dc.authorscopusid6602787345
dc.authorscopusid55893162300
dc.contributor.authorKholmetskii, A. L.
dc.contributor.authorYarman, T.
dc.contributor.authorMissevitch, O. V.
dc.contributor.otherEnerji Sistemleri Mühendisliği / Energy Systems Engineering
dc.date.accessioned2024-05-25T11:38:43Z
dc.date.available2024-05-25T11:38:43Z
dc.date.issued2023
dc.departmentOkan Universityen_US
dc.department-temp[Kholmetskii, A. L.] Belarusian State Univ, Minsk, BELARUS; [Yarman, T.] Istanbul Okan Univ, Istanbul, Turkiye; [Missevitch, O. V.] Belarusian State Univ, Inst Nucl Problems, Minsk, BELARUSen_US
dc.descriptionKholmetskii, Alexander/0000-0002-5182-315Xen_US
dc.description.abstractThe paper is motivated by our idea to re-define the momentum operator in quantum physics through the sum of mechanical and electromagnetic momenta for the system "charged particle in an electromagnetic field" instead of its canonical momentum, which occurred successful in describing quantum phase effects for charges and dipoles (Kholmetskii et al. in Ann. Phys. 392:49, 2018; Sci. Rep. 8:11,937, 2018). Furthermore, we show how a recently obtained expression for the "point-by-point" quantum phase of a charged particle in the framework of a fully quantized model of the Aharonov-Bohm effect (Marletto and Vedral in Phys. Rev. Lett. 125:040,401, 2020) supports the re-definition of the momentum operator in quantum mechanics from the theoretical side. These results motivated us to re-analyze the fundamental equations of relativistic quantum mechanics with a new energy-momentum operator. In this contribution, we solve the Dirac equation for an electrically bound electron with a new energy-momentum operator and extend the obtained solutions to the precise physics of simple atoms in the form of an effective theory, which does not touch the diagram technique of QED. We find that for majority of problems of precise physics of simple atoms, both definitions of the energy-momentum operator, yield indistinguishable results with modern measurement precision. An important exception is the spectroscopy of ortho-positronium, which occurs crucial in choosing the correct expression for the energy-momentum operator, and it shows that the available measurement data rather support the new definition of this operator.en_US
dc.identifier.citation2
dc.identifier.doi10.1140/epjp/s13360-023-03838-0
dc.identifier.issn2190-5444
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85149985368
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1140/epjp/s13360-023-03838-0
dc.identifier.urihttps://hdl.handle.net/20.500.14517/1274
dc.identifier.volume138en_US
dc.identifier.wosWOS:000948387300001
dc.identifier.wosqualityQ2
dc.institutionauthorYarman, Nuh Tolga
dc.language.isoen
dc.publisherSpringer Heidelbergen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject[No Keyword Available]en_US
dc.titleRedefinition of the energy-momentum operator: motivation and implicationsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicatione8750528-f58f-486e-9a0a-eb4ab45fb468
relation.isAuthorOfPublication.latestForDiscoverye8750528-f58f-486e-9a0a-eb4ab45fb468
relation.isOrgUnitOfPublicatione2c8b290-2656-4ea1-8e8f-954383d6b397
relation.isOrgUnitOfPublication.latestForDiscoverye2c8b290-2656-4ea1-8e8f-954383d6b397

Files