Design of stochastic neural networks for the fifth order system of singular engineering model
dc.authorscopusid | 56184182600 | |
dc.authorscopusid | 55405373600 | |
dc.authorscopusid | 56506688100 | |
dc.authorscopusid | 56704936300 | |
dc.authorscopusid | 23028598900 | |
dc.authorscopusid | 57203870179 | |
dc.contributor.author | Sabir, Zulqurnain | |
dc.contributor.author | Salahshour, Soheıl | |
dc.contributor.author | Hashem, Atef F. | |
dc.contributor.author | Abdelkawy, M. A. | |
dc.contributor.author | Salahshour, Soheil | |
dc.contributor.author | Umar, Muhammad | |
dc.date.accessioned | 2024-05-25T11:37:46Z | |
dc.date.available | 2024-05-25T11:37:46Z | |
dc.date.issued | 2024 | |
dc.department | Okan University | en_US |
dc.department-temp | [Sabir, Zulqurnain] Lebanese Amer Univ, Dept Comp Sci & Math, Byblos, Lebanon; [Babatin, M. M.; Hashem, Atef F.; Abdelkawy, M. A.] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, Riyadh 11566, Saudi Arabia; [Hashem, Atef F.; Abdelkawy, M. A.] Beni Suef Univ, Fac Sci, Dept Math & Informat Sci, Bani Suwayf, Egypt; [Salahshour, Soheil; Umar, Muhammad] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye | en_US |
dc.description.abstract | The current investigations provides a stochastic platform using the computational Levenberg-Marquardt Backpropagation (LMB) neural network (NN) approach, i.e., LMB-NN for solving the fifth order Emden-Fowler system (FOEFS) of equations. The singular models are always considered tough due to the singularity by using the traditional schemes, hence the stochastic solvers handle efficiently the singular point exactly at zero. The solution of four types of equations based on the FOEFS is presented by using the singularity and shape factor values. To calculate the approximate solutions of the FOEFS of equations, the training, validation and testing performances are used to reduce the mean square error. The selection of the training data is 70%, while testing and validation performances are used as 10% and 20%. The scheme's correctness is performed through the result's comparison along with the negligible absolute error performances for each example of the FOEFS. Moreover, the relative study through different investigations-based error histograms, and correlation update the efficacy of the scheme. | en_US |
dc.description.sponsorship | Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) [IMSIU-RP23088] | en_US |
dc.description.sponsorship | <BOLD>Funding</BOLD> This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-RP23088) . | en_US |
dc.identifier.citation | 0 | |
dc.identifier.doi | 10.1016/j.engappai.2024.108141 | |
dc.identifier.issn | 0952-1976 | |
dc.identifier.issn | 1873-6769 | |
dc.identifier.scopus | 2-s2.0-85186538424 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://doi.org/10.1016/j.engappai.2024.108141 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14517/1216 | |
dc.identifier.volume | 133 | en_US |
dc.identifier.wos | WOS:001198283100001 | |
dc.identifier.wosquality | Q1 | |
dc.institutionauthor | Salahshour S. | |
dc.language.iso | en | |
dc.publisher | Pergamon-elsevier Science Ltd | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Fifth order singular system | en_US |
dc.subject | Shape factor | en_US |
dc.subject | Mean square error | en_US |
dc.subject | Levenberg-marquardt backpropagation | en_US |
dc.subject | Multiple singularity | en_US |
dc.subject | Emden-fowler | en_US |
dc.title | Design of stochastic neural networks for the fifth order system of singular engineering model | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f5ba517c-75fb-4260-af62-01c5f5912f3d | |
relation.isAuthorOfPublication.latestForDiscovery | f5ba517c-75fb-4260-af62-01c5f5912f3d |