Multi-Objective Optimization of Buckling Load and Natural Frequency in Functionally Graded Porous Nanobeams Using Non-Dominated Sorting Genetic Algorithm-Ii

dc.authorscopusid59498981900
dc.authorscopusid57422522900
dc.authorscopusid57225906716
dc.authorscopusid55375146900
dc.authorscopusid57222872672
dc.authorscopusid58292177700
dc.authorscopusid57215931407
dc.contributor.authorSalahshour, Soheıl
dc.contributor.authorBasem, A.
dc.contributor.authorJasim, D.J.
dc.contributor.authorHashemian, M.
dc.contributor.authorAli Eftekhari, S.
dc.contributor.authorAl-fanhrawi, H.J.
dc.contributor.authorSalahshour, S.
dc.date.accessioned2025-01-15T21:48:43Z
dc.date.available2025-01-15T21:48:43Z
dc.date.issued2025
dc.departmentOkan Universityen_US
dc.department-tempLiu H., Electromechanic Research Institute, Hengshui University, Hengshui, 053000, China; Basem A., Faculty of Engineering, Warith Al-Anbiyaa University, Karbala, 56001, Iraq; Jasim D.J., Department of Chemical Engineering and Petroleum Industries, Al-Amarah University College, Maysan, Iraq; Hashemian M., Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran; Ali Eftekhari S., Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran; Al-fanhrawi H.J., Research and Studies Unit, Al-Mustaqbal University, Babylon, Hillah, 51001, Iraq; Abdullaeva B., Department of Mathematics and Information Technologies, Vice-Rector for Scientific Affairs, Tashkent State Pedagogical University, Tashkent, Uzbekistan; Salahshour S., Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkey, Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey, Faculty of Science and Letters, Piri Reis University, Tuzla, Istanbul, Turkeyen_US
dc.description.abstractThis study investigates the fundamental natural frequency and critical buckling load of Functionally Graded Porous nanobeams supported by an elastic medium, addressing the need for optimized designs in advanced nanostructures. Utilizing a Genetic Algorithm and Non-Dominated Sorting Genetic Algorithm-II, the research aims to identify the Pareto front for these two objectives while incorporating surface effects. The nanobeam is modeled using Nonlocal Strain Gradient Theory and Gurtin-Murdoch surface elasticity theory, with governing equations solved via the Generalized Differential Quadrature Method based on Reddy's Third-order Shear Deformation Theory. Key input parameters, including temperature gradient, residual surface stress, porosity, and elastic foundation properties, are varied to train two Artificial Neural Networks for output prediction. Results indicate that for the fundamental frequency, significant factors include the material length scale and the Pasternak shear foundation parameter, while the critical buckling load is mainly influenced by the temperature gradient and the same material parameters. These findings provide critical insights for designers, allowing them to make informed decisions based on optimal values for eight input parameters. © 2024 Elsevier Ltden_US
dc.identifier.citation0
dc.identifier.doi10.1016/j.engappai.2024.109938
dc.identifier.issn0952-1976
dc.identifier.scopus2-s2.0-85213966848
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.engappai.2024.109938
dc.identifier.urihttps://hdl.handle.net/20.500.14517/7619
dc.identifier.volume142en_US
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofEngineering Applications of Artificial Intelligenceen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Neural Networksen_US
dc.subjectGenetic Algorithmen_US
dc.subjectNondominated Sortingen_US
dc.subjectNonlocal Strain Gradient Theoryen_US
dc.subjectPorous Nanobeamen_US
dc.subjectSurface Effecten_US
dc.titleMulti-Objective Optimization of Buckling Load and Natural Frequency in Functionally Graded Porous Nanobeams Using Non-Dominated Sorting Genetic Algorithm-Iien_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf5ba517c-75fb-4260-af62-01c5f5912f3d
relation.isAuthorOfPublication.latestForDiscoveryf5ba517c-75fb-4260-af62-01c5f5912f3d

Files