Artificial neural network modeling of thermal characteristics of WO3-CuO (50:50)/water hybrid nanofluid with a back-propagation algorithm

dc.authoridYiran, Qu/0009-0008-8400-096X
dc.authoridJumaah, Dheyaa/0000-0001-7259-3392
dc.authorscopusid58850683700
dc.authorscopusid57225906716
dc.authorscopusid22136195900
dc.authorscopusid23028598900
dc.authorscopusid57213198671
dc.authorscopusid58290938100
dc.authorscopusid58290938100
dc.authorwosidYiran, Qu/JFB-5044-2023
dc.authorwosidJumaah, Dheyaa/GPS-5013-2022
dc.contributor.authorQu, Yiran
dc.contributor.authorJasim, Dheyaa J.
dc.contributor.authorSajadi, S. Mohammad
dc.contributor.authorSalahshour, Soheil
dc.contributor.authorKhabaz, Mohamad Khaje
dc.contributor.authorRahmanian, Alireza
dc.contributor.authorBaghaei, Sh.
dc.date.accessioned2024-05-25T11:37:42Z
dc.date.available2024-05-25T11:37:42Z
dc.date.issued2024
dc.departmentOkan Universityen_US
dc.department-temp[Qu, Yiran] Newcastle Univ, Sch Civil Engn & Geosci, Newcastle Upon Tyne NE1 7RU, England; [Jasim, Dheyaa J.] Al Amarah Univ Coll, Dept Petr Engn, Maysan, Iraq; [Sajadi, S. Mohammad] Cihan Univ Erbil, Dept Nutr, Erbil, Kurdistan Regio, Iraq; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Khabaz, Mohamad Khaje; Baghaei, Sh.] Islamic Azad Univ, Dept Mech Engn, Khomeinishahr Branch, Khomeinishahr, Iran; [Rahmanian, Alireza] Isfahan Univ Technol, Coll Agr, Dept Biosyst Engn, Esfahan 83111, Iranen_US
dc.descriptionYiran, Qu/0009-0008-8400-096X; Jumaah, Dheyaa/0000-0001-7259-3392en_US
dc.description.abstractThermophysical properties such as thermal conductivity (knf) make the use of fluid suitable for heat transfer. Fluids such as water have limited applications due to their low thermal conductivity. One of the new methods to improve the properties of fluids is to add nanoparticles with high thermal conductivity and create a nanofluid. Nanofluids combine the suspension of two or more nanoparticles in a base fluid or the suspension of hybrid nanoparticles in a base fluid. This study investigates the thermal behavior of WO3-CuO (50:50)/water nanofluid using an artificial neural network (ANN) and back -propagation algorithm. The results show that increasing the volume fraction of nanoparticles (phi) (due to increasing the surface -to -volume ratio) increases the knf. In this study, ANN modeling for WO3-CuO/water (50:50) hybrid nanofluid was performed to investigate the effect of nanofluid on knf. These two important parameters are phi and temperature. The results show that increasing the phi increases the knf due to increasing the surface -to -volume ratio and the collision between nanoparticles. Increasing the temperature shows a similar effect and improves the knf by increasing the interaction between the nanoparticles. The effect of temperature on the knf is more significant than the phi, equal to 16.33% and 6.72%, respectively. Function parameters such as correlation and error value for hidden layer 7 and 12 neurons are about 0.982, 0.981, and 10-6, respectively. As a result, ANN models offer acceptable performance in estimating knf, and the correlation coefficients and error values are 0.96 and 10-6, respectively. Given the absolute error value, it can be concluded that the proposed models can predict the knf of WO3-CuO (50:50)/water hybrid nanofluid.en_US
dc.identifier.citation1
dc.identifier.doi10.1016/j.mtcomm.2024.108169
dc.identifier.issn2352-4928
dc.identifier.scopus2-s2.0-85183466186
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1016/j.mtcomm.2024.108169
dc.identifier.urihttps://hdl.handle.net/20.500.14517/1209
dc.identifier.volume38en_US
dc.identifier.wosWOS:001173195300001
dc.identifier.wosqualityQ2
dc.institutionauthorSalahshour S.
dc.institutionauthorSalahshour, Soheıl
dc.language.isoen
dc.publisherElsevieren_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectThermal conductivityen_US
dc.subjectNanofluiden_US
dc.subjectANNen_US
dc.subjectBack -propagation algorithmen_US
dc.titleArtificial neural network modeling of thermal characteristics of WO3-CuO (50:50)/water hybrid nanofluid with a back-propagation algorithmen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf5ba517c-75fb-4260-af62-01c5f5912f3d
relation.isAuthorOfPublication.latestForDiscoveryf5ba517c-75fb-4260-af62-01c5f5912f3d

Files