A molecular dynamics study of the effect of initial pressure on the mechanical resilience of aluminum polycrystalline

dc.authorscopusid59310106800
dc.authorscopusid57225906716
dc.authorscopusid56999952800
dc.authorscopusid57157991800
dc.authorscopusid23028598900
dc.authorscopusid57208127315
dc.authorwosidhekmatifar, maboud/AFN-9654-2022
dc.authorwosidJasim, Dheyaa/GPS-5013-2022
dc.contributor.authorSalahshour, Soheıl
dc.contributor.authorJasim, Dheyaa J.
dc.contributor.authorAlizadeh, As'ad
dc.contributor.authorChan, Choon Kit
dc.contributor.authorSalahshour, Soheil
dc.contributor.authorHekmatifar, Maboud
dc.date.accessioned2024-10-15T20:20:23Z
dc.date.available2024-10-15T20:20:23Z
dc.date.issued2024
dc.departmentOkan Universityen_US
dc.department-temp[Ali, Ali B. M.] Univ Warith Al Anbiyaa, Coll Engn, Air Conditioning Engn Dept, Karbala, Iraq; [Jasim, Dheyaa J.] Al Amarah Univ Coll, Dept Petr Engn, Maysan, Iraq; [Alizadeh, As'ad] Cihan Univ Erbil, Coll Engn, Dept Civil Engn, Erbil, Iraq; [Chan, Choon Kit] INTI Int Univ, Fac Engn & Quant Surveying, Persiaran Perdana BBN, Nilai 71800, Negeri Sembilan, Malaysia; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanonen_US
dc.description.abstractPolycrystalline materials are essential in engineering due to their ability to withstand various forces, heat, and environmental conditions. The arrangement of atoms within these crystals significantly affects their mechanical properties. This study used molecular dynamics simulations to explore how initial pressure affects the mechanical resilience of aluminum polycrystals. Aluminum composite materials, known for their strength, flexibility, and environmental sustainability, are the focus of this investigation. We particularly investigated stress- strain reactions at 1, 2, and 3 bar initial pressures. Reduced free volume causes atomic migration to be hampered as pressure increases, therefore affecting mean square displacement and diffusion coefficient. The results show that ultimate strength and Young's modulus of the polycrystalline samples were 30 and 6.64 GPa at 1 bar pressure. Moreover, the results demonstrated a notable decrease in mechanical performance by increasing pressure; the ultimate strength and Young's modulus of the polycrystalline samples diminished to 5.66 GPa and 22.43 GPa, respectively, at 3 bar. Furthermore, the heat flux increased by rising initial pressure in the Al- polycrystalline sample due to the compression of material that reduced atomic distances. This improved atomic arrangement facilitated more efficient heat transfer. These insights are essential for engineering applications, as they establish a foundation for the production of aluminum components that maintain structural integrity in the face of extreme conditions.en_US
dc.description.woscitationindexEmerging Sources Citation Index
dc.identifier.citation0
dc.identifier.doi10.1016/j.rineng.2024.102879
dc.identifier.issn2590-1230
dc.identifier.scopus2-s2.0-85203862812
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.rineng.2024.102879
dc.identifier.urihttps://hdl.handle.net/20.500.14517/6575
dc.identifier.volume24en_US
dc.identifier.wosWOS:001316753800001
dc.language.isoen
dc.publisherElsevieren_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAl polycrystalen_US
dc.subjectStress-strain curveen_US
dc.subjectInitial pressureen_US
dc.subjectMolecular dynamics simulationen_US
dc.subjectProduct innovationen_US
dc.titleA molecular dynamics study of the effect of initial pressure on the mechanical resilience of aluminum polycrystallineen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf5ba517c-75fb-4260-af62-01c5f5912f3d
relation.isAuthorOfPublication.latestForDiscoveryf5ba517c-75fb-4260-af62-01c5f5912f3d

Files