Free vibration analysis of a functionally graded porous nanoplate in a hygrothermal environment resting on an elastic foundation

dc.authorscopusid58952209900
dc.authorscopusid21743325400
dc.authorscopusid55375146900
dc.authorscopusid56388625300
dc.authorscopusid23028598900
dc.contributor.authorSalahshour, Soheıl
dc.contributor.authorMokhtarian, A.
dc.contributor.authorHashemian, M.
dc.contributor.authorPirmoradian, M.
dc.contributor.authorSalahshour, S.
dc.date.accessioned2024-12-15T15:41:11Z
dc.date.available2024-12-15T15:41:11Z
dc.date.issued2024
dc.departmentOkan Universityen_US
dc.department-tempMottaghi A., Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran; Mokhtarian A., Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran; Hashemian M., Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran; Pirmoradian M., Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran; Salahshour S., Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkey, Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey, Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanonen_US
dc.description.abstractThis research investigates the free vibrational behavior of a functionally graded porous (FGP) nanoplate resting on an elastic Pasternak foundation in a hygrothermal environment. The nanoplate is modeled based on the nonlocal strain gradient theory (NSGT) and considering several plate theories including the CPT (classical plate theory), the FSDT (first-order shear deformation theory), and the TSDT (third-order shear deformation theory). Several patterns are investigated for the dispersion of pores, and the surface effects are incorporated to enhance the precision of the model. The governing equations and boundary conditions are derived via Hamilton's principle and an exact solution is provided via the Navier method. The impacts of several parameters on the natural frequencies are inspected such as length scale and nonlocal parameters, surface effects, porosity parameter, hygrothermal environment, and coefficients of the foundation. The results show that the impact of the porosity parameter on the natural frequencies of nanoplates is significantly dependent on the porosity distribution pattern. It is discovered that by increasing the porosity parameter from 0 to 0.6, the relative changes of natural frequencies vary from a decrease of 30 % to an increase of 6 %. © 2024 The Author(s)en_US
dc.identifier.citation0
dc.identifier.doi10.1016/j.finmec.2024.100294
dc.identifier.issn2666-3597
dc.identifier.scopus2-s2.0-85209741825
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1016/j.finmec.2024.100294
dc.identifier.urihttps://hdl.handle.net/20.500.14517/7538
dc.identifier.volume17en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.relation.ispartofForces in Mechanicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFree vibrationen_US
dc.subjectHygrothermal environmenten_US
dc.subjectNonlocal strain gradient theoryen_US
dc.subjectPorous materialen_US
dc.subjectSurface effectsen_US
dc.titleFree vibration analysis of a functionally graded porous nanoplate in a hygrothermal environment resting on an elastic foundationen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf5ba517c-75fb-4260-af62-01c5f5912f3d
relation.isAuthorOfPublication.latestForDiscoveryf5ba517c-75fb-4260-af62-01c5f5912f3d

Files