A Deep Learning Framework for Solving Fractional Partial Differential Equations

dc.authorscopusid57208467202
dc.authorscopusid55670963500
dc.authorscopusid55602202100
dc.authorscopusid55671394500
dc.contributor.authorAli, Amina
dc.contributor.authorSenu, Norazak
dc.contributor.authorAhmadian, Ali
dc.contributor.authorWahi, Nadihah
dc.date.accessioned2025-04-15T23:53:15Z
dc.date.available2025-04-15T23:53:15Z
dc.date.issued2025
dc.departmentOkan Universityen_US
dc.department-temp[Ali, Amina; Senu, Norazak; Wahi, Nadihah] Univ Putra Malaysia, Dept Math & Stat, UPM 43400, Serdang, Malaysia; [Ali, Amina] Univ Sulaimani, Coll Educ, Dept Math, Sulaymaniyah, Iraq; [Senu, Norazak; Wahi, Nadihah] Univ Putra Malaysia, Inst Math Res, UPM 43400, Serdang, Malaysia; [Ahmadian, Ali] Jadara Univ, Jadara Univ Res Ctr, Jadara, Jordan; [Ahmadian, Ali] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiyeen_US
dc.description.abstractThis research focuses on the study and solution of fractional partial differential equations (FPDEs), a critical area in mathematical analysis. FPDEs pose significant challenges due to their complexity, often requiring extensive computational resources to solve. Given the scarcity of exact solutions, numerical methods have been a primary approach for tackling FPDEs. However, these methods often yield substantial but limited results. The ongoing quest for more effective solutions has led researchers to explore new methodologies. Recent advancements in deep learning (DL), particularly in deep neural networks (DNNs), offer promising tools for solving FPDEs due to their exceptional function-approximation capabilities, demonstrated in diverse applications such as image classification and natural language processing. This research addresses the challenges of solving FPDEs by proposing a novel deep feedforward neural network (DFNN) framework. The method integrates the Laplace transform for memory-efficient Caputo derivative approximations and demonstrates superior accuracy across various examples. The results highlight the framework's versatility and computational efficiency, establishing it as a powerful tool for solving FPDEs.en_US
dc.description.sponsorshipMalaysia Ministry of Education [FRGS/1/2022/STG06/UPM/02/2]en_US
dc.description.sponsorshipThe authors are very thankful to Malaysia Ministry of Education for awarded Fundamental Research Grant Scheme (Ref. No. FRGS/1/2022/STG06/UPM/02/2) for supporting this work.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1088/1402-4896/adbd8f
dc.identifier.issn0031-8949
dc.identifier.issn1402-4896
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-105000376188
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1088/1402-4896/adbd8f
dc.identifier.urihttps://hdl.handle.net/20.500.14517/7780
dc.identifier.volume100en_US
dc.identifier.wosWOS:001448472800001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherIop Publishing Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectLaplace Transform Methoden_US
dc.subjectFractional Partial Differential Equationsen_US
dc.subjectArtificial Neural Networksen_US
dc.subjectGradient Descenten_US
dc.subjectDeep Neural Networken_US
dc.titleA Deep Learning Framework for Solving Fractional Partial Differential Equationsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files