A High-Performance Neural Network Algorithm Using a Legendre Ensemble-Based Extreme Learning Machine for Solving Fractional Partial Differential Equations
| dc.authorscopusid | 55534562300 | |
| dc.authorscopusid | 55670963500 | |
| dc.authorscopusid | 59760609700 | |
| dc.authorwosid | Senu, Norazak/G-2776-2014 | |
| dc.authorwosid | Ahmadian, Ali/N-3697-2015 | |
| dc.contributor.author | Isah, Ibrahim Onimisi | |
| dc.contributor.author | Senu, Norazak | |
| dc.contributor.author | Ahmadian, Ali | |
| dc.date.accessioned | 2025-12-15T15:28:48Z | |
| dc.date.available | 2025-12-15T15:28:48Z | |
| dc.date.issued | 2026 | |
| dc.department | Okan University | en_US |
| dc.department-temp | [Isah, Ibrahim Onimisi; Senu, Norazak] Univ Putra Malaysia UPM, Inst Math Res INSPEM, Upm Serdang 43400, Selangor Darul, Malaysia; [Senu, Norazak] Univ Putra Malaysia, Dept Math & Stat, Upm Serdang 43400, Selangor, Malaysia; [Isah, Ibrahim Onimisi] Prince Abubakar Audu Univ, Dept Math Sci, PMB 1008, Anyigba, Nigeria; [Ahmadian, Ali] Univ Mediterranea Reggio Calabria, Decis Lab, Reggio Di Calabria, Italy; [Ahmadian, Ali] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye | en_US |
| dc.description.abstract | The recent advancement in the use of machine learning techniques across various fields has paved the way for innovative approaches to solving fractional partial differential equations (FPDEs), particularly those utilizing neural networks (NNs). These methods enable efficient representation of complete solutions, leveraging the universal approximation capabilities of neural networks. This study presents a neural network-based method that utilizes the ensemble extreme learning machine (EN-ELM) to efficiently solve FPDEs considered in the sense of the Caputo fractional derivative. The proposed approach incorporates Legendre polynomials to expand input features and employs the radial basis function as the activation function for hidden layer neurons. The EN-ELM framework, enhanced with cross-validation, ensures improved accuracy, stability, and reduced computational complexity. Numerical experiments are conducted to validate the approach, demonstrating its superior accuracy, execution time, and error minimization compared to some known methods. The results confirm the robustness and effectiveness of the proposed method for solving FPDEs. | en_US |
| dc.description.woscitationindex | Science Citation Index Expanded | |
| dc.identifier.doi | 10.1016/j.cam.2025.117220 | |
| dc.identifier.issn | 0377-0427 | |
| dc.identifier.issn | 1879-1778 | |
| dc.identifier.scopus | 2-s2.0-105022157448 | |
| dc.identifier.scopusquality | N/A | |
| dc.identifier.uri | https://doi.org/10.1016/j.cam.2025.117220 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14517/8626 | |
| dc.identifier.volume | 477 | en_US |
| dc.identifier.wos | WOS:001624218800001 | |
| dc.identifier.wosquality | Q1 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier | en_US |
| dc.relation.ispartof | Journal of Computational and Applied Mathematics | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Ensemble Extreme Learning Machine | en_US |
| dc.subject | Fractional Partial Differential Equations | en_US |
| dc.subject | Legendre Polynomials | en_US |
| dc.subject | Radial Basis Function | en_US |
| dc.subject | Caputo Fractional Derivative | en_US |
| dc.subject | Neural Networks | en_US |
| dc.title | A High-Performance Neural Network Algorithm Using a Legendre Ensemble-Based Extreme Learning Machine for Solving Fractional Partial Differential Equations | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |