A High-Performance Neural Network Algorithm Using a Legendre Ensemble-Based Extreme Learning Machine for Solving Fractional Partial Differential Equations

dc.authorscopusid 55534562300
dc.authorscopusid 55670963500
dc.authorscopusid 59760609700
dc.authorwosid Senu, Norazak/G-2776-2014
dc.authorwosid Ahmadian, Ali/N-3697-2015
dc.contributor.author Isah, Ibrahim Onimisi
dc.contributor.author Senu, Norazak
dc.contributor.author Ahmadian, Ali
dc.date.accessioned 2025-12-15T15:28:48Z
dc.date.available 2025-12-15T15:28:48Z
dc.date.issued 2026
dc.department Okan University en_US
dc.department-temp [Isah, Ibrahim Onimisi; Senu, Norazak] Univ Putra Malaysia UPM, Inst Math Res INSPEM, Upm Serdang 43400, Selangor Darul, Malaysia; [Senu, Norazak] Univ Putra Malaysia, Dept Math & Stat, Upm Serdang 43400, Selangor, Malaysia; [Isah, Ibrahim Onimisi] Prince Abubakar Audu Univ, Dept Math Sci, PMB 1008, Anyigba, Nigeria; [Ahmadian, Ali] Univ Mediterranea Reggio Calabria, Decis Lab, Reggio Di Calabria, Italy; [Ahmadian, Ali] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye en_US
dc.description.abstract The recent advancement in the use of machine learning techniques across various fields has paved the way for innovative approaches to solving fractional partial differential equations (FPDEs), particularly those utilizing neural networks (NNs). These methods enable efficient representation of complete solutions, leveraging the universal approximation capabilities of neural networks. This study presents a neural network-based method that utilizes the ensemble extreme learning machine (EN-ELM) to efficiently solve FPDEs considered in the sense of the Caputo fractional derivative. The proposed approach incorporates Legendre polynomials to expand input features and employs the radial basis function as the activation function for hidden layer neurons. The EN-ELM framework, enhanced with cross-validation, ensures improved accuracy, stability, and reduced computational complexity. Numerical experiments are conducted to validate the approach, demonstrating its superior accuracy, execution time, and error minimization compared to some known methods. The results confirm the robustness and effectiveness of the proposed method for solving FPDEs. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1016/j.cam.2025.117220
dc.identifier.issn 0377-0427
dc.identifier.issn 1879-1778
dc.identifier.scopus 2-s2.0-105022157448
dc.identifier.scopusquality N/A
dc.identifier.uri https://doi.org/10.1016/j.cam.2025.117220
dc.identifier.uri https://hdl.handle.net/20.500.14517/8626
dc.identifier.volume 477 en_US
dc.identifier.wos WOS:001624218800001
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.ispartof Journal of Computational and Applied Mathematics en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Ensemble Extreme Learning Machine en_US
dc.subject Fractional Partial Differential Equations en_US
dc.subject Legendre Polynomials en_US
dc.subject Radial Basis Function en_US
dc.subject Caputo Fractional Derivative en_US
dc.subject Neural Networks en_US
dc.title A High-Performance Neural Network Algorithm Using a Legendre Ensemble-Based Extreme Learning Machine for Solving Fractional Partial Differential Equations en_US
dc.type Article en_US
dspace.entity.type Publication

Files