A Critical Point Approach To Non-Local Complex Systems of Fractional Discrete Equations
dc.authorscopusid | 56224779700 | |
dc.authorscopusid | 23097829600 | |
dc.authorscopusid | 57159101400 | |
dc.contributor.author | Ferrara, Massimiliano | |
dc.contributor.author | Heidarkhani, Shapour | |
dc.contributor.author | Moradi, Shahin | |
dc.date.accessioned | 2025-02-17T18:49:05Z | |
dc.date.available | 2025-02-17T18:49:05Z | |
dc.date.issued | 2025 | |
dc.department | Okan University | en_US |
dc.department-temp | [Ferrara, Massimiliano] Univ Mediterranea Reggio Calabria, Dept Law Econ & Human Sci, Decis LAB, Via Bianchi 2, I-89131 Reggio Di Calabria, Italy; [Ferrara, Massimiliano] Bocconi Univ, Dept Management & Technol, ICRIOS, Invernizzi Ctr Res Innovat Org Strategy & Entrepre, Via Sarfatti 25, I-20136 Milan, MI, Italy; [Ferrara, Massimiliano] Istanbul Okan Univ, Fac Engn & Nat Sci, Adv Soft Comp Lab, Istanbul, Turkiye; [Heidarkhani, Shapour; Moradi, Shahin] Razi Univ, Fac Sci, Dept Math, Kermanshah, Iran; [Heidarkhani, Shapour] Univ Mediterranea Reggio Calabria, Informat Engn Infrastructure & Sustainable Energy, Reggio Di Calabria, Italy | en_US |
dc.description.abstract | Discrete fractional equations have emerged across various fields such as science, engineering, economics, and finance to better capture the characteristics of non-local complex systems. In this discussion, we explore the existence of at least three unique solutions for discrete fractional boundary value problems featuring a p-Laplacian operator, provided suitable hypotheses on nonlinear terms are met. Our approach primarily relies on variational methods and critical points theorems. Additionally, we present an example to demonstrate the implications of our findings. | en_US |
dc.description.sponsorship | Next Generation EU-Italian NRRP [2021/3277, ECS0000009] | en_US |
dc.description.sponsorship | This work was funded by the Next Generation EU-Italian NRRP, Mission 4, Component 2, Investment 1.5, call for the creation and strengthening of 'Innovation Ecosystems', building 'Territorial R&D Leaders' (Directorial Decree n. 2021/3277) - project Tech4You - Technologies for climate change adaptation and quality of life improvement, n. ECS0000009. This work reflects only the authors' views and opinions, neither the Ministry for University and Research nor the European Commission can be considered responsible for them. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | 0 | |
dc.identifier.doi | 10.2989/16073606.2025.2457686 | |
dc.identifier.issn | 1607-3606 | |
dc.identifier.issn | 1727-933X | |
dc.identifier.scopus | 2-s2.0-85216619273 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.2989/16073606.2025.2457686 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14517/7660 | |
dc.identifier.wos | WOS:001413597800001 | |
dc.identifier.wosquality | Q3 | |
dc.language.iso | en | en_US |
dc.publisher | Taylor & Francis Ltd | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Three Solutions | en_US |
dc.subject | Discrete Equation | en_US |
dc.subject | Fractional | en_US |
dc.subject | Variational Methods | en_US |
dc.title | A Critical Point Approach To Non-Local Complex Systems of Fractional Discrete Equations | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |