A Critical Point Approach To Non-Local Complex Systems of Fractional Discrete Equations

dc.authorscopusid56224779700
dc.authorscopusid23097829600
dc.authorscopusid57159101400
dc.contributor.authorFerrara, Massimiliano
dc.contributor.authorHeidarkhani, Shapour
dc.contributor.authorMoradi, Shahin
dc.date.accessioned2025-02-17T18:49:05Z
dc.date.available2025-02-17T18:49:05Z
dc.date.issued2025
dc.departmentOkan Universityen_US
dc.department-temp[Ferrara, Massimiliano] Univ Mediterranea Reggio Calabria, Dept Law Econ & Human Sci, Decis LAB, Via Bianchi 2, I-89131 Reggio Di Calabria, Italy; [Ferrara, Massimiliano] Bocconi Univ, Dept Management & Technol, ICRIOS, Invernizzi Ctr Res Innovat Org Strategy & Entrepre, Via Sarfatti 25, I-20136 Milan, MI, Italy; [Ferrara, Massimiliano] Istanbul Okan Univ, Fac Engn & Nat Sci, Adv Soft Comp Lab, Istanbul, Turkiye; [Heidarkhani, Shapour; Moradi, Shahin] Razi Univ, Fac Sci, Dept Math, Kermanshah, Iran; [Heidarkhani, Shapour] Univ Mediterranea Reggio Calabria, Informat Engn Infrastructure & Sustainable Energy, Reggio Di Calabria, Italyen_US
dc.description.abstractDiscrete fractional equations have emerged across various fields such as science, engineering, economics, and finance to better capture the characteristics of non-local complex systems. In this discussion, we explore the existence of at least three unique solutions for discrete fractional boundary value problems featuring a p-Laplacian operator, provided suitable hypotheses on nonlinear terms are met. Our approach primarily relies on variational methods and critical points theorems. Additionally, we present an example to demonstrate the implications of our findings.en_US
dc.description.sponsorshipNext Generation EU-Italian NRRP [2021/3277, ECS0000009]en_US
dc.description.sponsorshipThis work was funded by the Next Generation EU-Italian NRRP, Mission 4, Component 2, Investment 1.5, call for the creation and strengthening of 'Innovation Ecosystems', building 'Territorial R&D Leaders' (Directorial Decree n. 2021/3277) - project Tech4You - Technologies for climate change adaptation and quality of life improvement, n. ECS0000009. This work reflects only the authors' views and opinions, neither the Ministry for University and Research nor the European Commission can be considered responsible for them.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citation0
dc.identifier.doi10.2989/16073606.2025.2457686
dc.identifier.issn1607-3606
dc.identifier.issn1727-933X
dc.identifier.scopus2-s2.0-85216619273
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.2989/16073606.2025.2457686
dc.identifier.urihttps://hdl.handle.net/20.500.14517/7660
dc.identifier.wosWOS:001413597800001
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherTaylor & Francis Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectThree Solutionsen_US
dc.subjectDiscrete Equationen_US
dc.subjectFractionalen_US
dc.subjectVariational Methodsen_US
dc.titleA Critical Point Approach To Non-Local Complex Systems of Fractional Discrete Equationsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files