Efficient solutions to time-fractional telegraph equations with Chebyshev neural networks

dc.authorid Senu, Norazak/0000-0001-8614-8281
dc.authorscopusid 57208467202
dc.authorscopusid 55670963500
dc.authorscopusid 55602202100
dc.authorwosid Senu, Norazak/G-2776-2014
dc.contributor.author Ali, A.H.
dc.contributor.author Senu, N.
dc.contributor.author Ahmadian, A.
dc.date.accessioned 2024-10-15T20:20:26Z
dc.date.available 2024-10-15T20:20:26Z
dc.date.issued 2024
dc.department Okan University en_US
dc.department-temp Ali A.H., Department of Mathematics and Statistics, Universiti Putra Malaysia, Serdang, 43400 UPM, Malaysia, Department of Mathematics, College of Education, University of Sulaimani, Sulaymaniyah, Iraq; Senu N., Department of Mathematics and Statistics, Universiti Putra Malaysia, Serdang, 43400 UPM, Malaysia, Institute for Mathematical Research, Universiti Putra Malaysia, Serdang, 43400 UPM, Malaysia; Ahmadian A., Decisions Lab, Mediterranea University of Reggio Calabria, Reggio Calabria, Italy, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkey en_US
dc.description Senu, Norazak/0000-0001-8614-8281 en_US
dc.description.abstract This study aims to employ artificial neural networks (ANNs) as a novel method for solving time fractional telegraph equations (TFTEs), which are typically addressed using the Caputo fractional derivative in scientific investigations. By integrating Chebyshev polynomials as a substitute for the traditional hidden layer, computational performance is enhanced, and the range of input patterns is broadened. A feed-forward neural network (NN) model, optimized using the adaptive moment estimation (Adam) technique, is utilized to refine network parameters and minimize errors. Additionally, the Taylor series is applied to the activation function, which removes any limitation on taking fractional derivatives during the minimization process. Several benchmark problems are selected to evaluate the proposed method, and their numerical solutions are obtained. The results demonstrate the method’s effectiveness and accuracy, as evidenced by the close agreement between the numerical solutions and analytical solutions. © 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. en_US
dc.description.sponsorship Kementerian Pendidikan Malaysia, KPM, (FRGS/1/2022/STG06/UPM/02/2) en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citationcount 0
dc.identifier.doi 10.1088/1402-4896/ad7c93
dc.identifier.issn 0031-8949
dc.identifier.issue 11 en_US
dc.identifier.scopus 2-s2.0-85206219028
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1088/1402-4896/ad7c93
dc.identifier.uri https://hdl.handle.net/20.500.14517/6581
dc.identifier.uri https://doi.org/10.1088/1402-4896/ad7c93
dc.identifier.volume 99 en_US
dc.identifier.wos WOS:001324350000001
dc.identifier.wosquality Q2
dc.language.iso en
dc.publisher Institute of Physics en_US
dc.relation.ispartof Physica Scripta en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject Caputo fractional derivative en_US
dc.subject Chebyshev polynomials en_US
dc.subject neural network en_US
dc.subject time fractional telegraph equations en_US
dc.title Efficient solutions to time-fractional telegraph equations with Chebyshev neural networks en_US
dc.type Article en_US
dc.wos.citedbyCount 0

Files