Efficient solutions to time-fractional telegraph equations with Chebyshev neural networks

dc.authoridSenu, Norazak/0000-0001-8614-8281
dc.authorscopusid57208467202
dc.authorscopusid55670963500
dc.authorscopusid55602202100
dc.authorwosidSenu, Norazak/G-2776-2014
dc.contributor.authorAli, A.H.
dc.contributor.authorSenu, N.
dc.contributor.authorAhmadian, A.
dc.date.accessioned2024-10-15T20:20:26Z
dc.date.available2024-10-15T20:20:26Z
dc.date.issued2024
dc.departmentOkan Universityen_US
dc.department-tempAli A.H., Department of Mathematics and Statistics, Universiti Putra Malaysia, Serdang, 43400 UPM, Malaysia, Department of Mathematics, College of Education, University of Sulaimani, Sulaymaniyah, Iraq; Senu N., Department of Mathematics and Statistics, Universiti Putra Malaysia, Serdang, 43400 UPM, Malaysia, Institute for Mathematical Research, Universiti Putra Malaysia, Serdang, 43400 UPM, Malaysia; Ahmadian A., Decisions Lab, Mediterranea University of Reggio Calabria, Reggio Calabria, Italy, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkeyen_US
dc.descriptionSenu, Norazak/0000-0001-8614-8281en_US
dc.description.abstractThis study aims to employ artificial neural networks (ANNs) as a novel method for solving time fractional telegraph equations (TFTEs), which are typically addressed using the Caputo fractional derivative in scientific investigations. By integrating Chebyshev polynomials as a substitute for the traditional hidden layer, computational performance is enhanced, and the range of input patterns is broadened. A feed-forward neural network (NN) model, optimized using the adaptive moment estimation (Adam) technique, is utilized to refine network parameters and minimize errors. Additionally, the Taylor series is applied to the activation function, which removes any limitation on taking fractional derivatives during the minimization process. Several benchmark problems are selected to evaluate the proposed method, and their numerical solutions are obtained. The results demonstrate the method’s effectiveness and accuracy, as evidenced by the close agreement between the numerical solutions and analytical solutions. © 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.en_US
dc.description.sponsorshipKementerian Pendidikan Malaysia, KPM, (FRGS/1/2022/STG06/UPM/02/2)en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citation0
dc.identifier.doi10.1088/1402-4896/ad7c93
dc.identifier.issn0031-8949
dc.identifier.issue11en_US
dc.identifier.scopus2-s2.0-85206219028
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1088/1402-4896/ad7c93
dc.identifier.urihttps://hdl.handle.net/20.500.14517/6581
dc.identifier.urihttps://doi.org/10.1088/1402-4896/ad7c93
dc.identifier.volume99en_US
dc.identifier.wosWOS:001324350000001
dc.identifier.wosqualityQ2
dc.language.isoen
dc.publisherInstitute of Physicsen_US
dc.relation.ispartofPhysica Scriptaen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCaputo fractional derivativeen_US
dc.subjectChebyshev polynomialsen_US
dc.subjectneural networken_US
dc.subjecttime fractional telegraph equationsen_US
dc.titleEfficient solutions to time-fractional telegraph equations with Chebyshev neural networksen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files