A New Method Based on Local Binary Gaussian Pattern for Classification of Rat Estrous Cycle Stages Using Smear Images

dc.authoridKilic, Irfan/0000-0001-5079-2825
dc.authorwosidYAMAN, Orhan/V-5800-2018
dc.authorwosidOz, Zeynep Dila/JTV-2893-2023
dc.authorwosidKilic, Irfan/A-7849-2019
dc.contributor.authorSerhatlioglu, Ihsan
dc.contributor.authorKilic, Irfan
dc.contributor.authorYaman, Orhan
dc.contributor.authorKacar, Emine
dc.contributor.authorOz, Zeynep Dila
dc.contributor.authorOzdede, Mehmet Ridvan
dc.contributor.authorKelestimur, Haluk
dc.contributor.otherFizyoloji / Physiology
dc.date.accessioned2025-01-15T21:48:42Z
dc.date.available2025-01-15T21:48:42Z
dc.date.issued2025
dc.departmentOkan Universityen_US
dc.department-temp[Serhatlioglu, Ihsan; Yol, Ferhat] Firat Univ, Fac Med, Dept Biophys, Elazig, Turkiye; [Kilic, Irfan] Firat Univ, Dept Informat Technol, Elazig, Turkiye; [Yaman, Orhan] Firat Univ, Fac Technol, Dept Digital Forens, Elazig, Turkiye; [Kacar, Emine; Oz, Zeynep Dila; Ozdede, Mehmet Ridvan] Firat Univ, Fac Med, Dept Physiol, Elazig, Turkiye; [Kelestimur, Haluk] Istanbul Okan Univ, Fac Med, Dept Physiol, Istanbul, Turkiyeen_US
dc.descriptionKilic, Irfan/0000-0001-5079-2825en_US
dc.description.abstractIn this study, a unique dataset was created by classifying the images of vaginal smears taken from rats under a microscope for 4 different cycles. Classifying a new case image with the help of this dataset is a computer vision problem. In this study, to improve the weaknesses of the LBP algorithm, a new feature extraction method called Local Binary Gaussian Pattern (LBGP) is developed based on the Gaussian matrix, which helps to remove noise in images. Local Binary Gaussian Pattern proposes a Gaussian-like filter inspired by the Gaussian matrix. After converting the smearing image to the gray histogram, the image features obtained with the help of the Local Binary Pattern (LBP) and our proposed Local Binary Gaussian Pattern (LBGP) feature extractor are combined to obtain features that we call hybrid features. From these features, the ones above a certain threshold value are selected with the help of Neighborhood Component Analysis (NCA), and a Hybrid + Neighborhood Component Analysis (NCA) approach is presented. All hybrid features and hybrid features reduced by Neighborhood Component Analysis were trained with Support Vector Machine (SVM), Decision Trees (DT), Naive Bayes (NB), and k-nearest Neighbors (k-NN) classifiers. According to the classification results, it is seen that the Support Vector Machine (SVM) is effectively classified with the trained classifier. With the Support Vector Machine (SVM) classifier, a success rate of over 90 % (90.25 %) was achieved. Considering the difficulty of classifying smearing images, this result is promising for the future stages of this study.en_US
dc.description.sponsorshipResearch Council of Turkey (TUBITAK) [220S744]en_US
dc.description.sponsorshipThis work was supported by the Scientific and Technologicalen_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citationcount0
dc.identifier.doi10.1016/j.bspc.2024.107390
dc.identifier.issn1746-8094
dc.identifier.issn1746-8108
dc.identifier.scopus2-s2.0-85212930991
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.bspc.2024.107390
dc.identifier.volume103en_US
dc.identifier.wosWOS:001394601800001
dc.identifier.wosqualityQ2
dc.institutionauthorKeleştimur, Haluk
dc.institutionauthorKeleştimur, Haluk
dc.language.isoenen_US
dc.publisherElsevier Sci Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.scopus.citedbyCount0
dc.subjectLocal Binary Gaussian Patternen_US
dc.subjectSmear Images Classificationen_US
dc.subjectEstrous Smear Dataseten_US
dc.subjectClassificationen_US
dc.subjectNeighbour Component Analysisen_US
dc.titleA New Method Based on Local Binary Gaussian Pattern for Classification of Rat Estrous Cycle Stages Using Smear Imagesen_US
dc.typeArticleen_US
dc.wos.citedbyCount0
dspace.entity.typePublication
relation.isAuthorOfPublication19d5be1a-0a22-4274-9e75-0d513d82f594
relation.isAuthorOfPublication.latestForDiscovery19d5be1a-0a22-4274-9e75-0d513d82f594
relation.isOrgUnitOfPublicationebc8b17a-7820-49f5-9a23-309262df546e
relation.isOrgUnitOfPublication.latestForDiscoveryebc8b17a-7820-49f5-9a23-309262df546e

Files