Using Evolutionary Algorithms and Group Method of Data Handling Ann for Prediction of the Viscosity Mwcnt-Zno /Oil Sae 50 Nano-Lubricant

dc.authoridSawaran Singh, Narinderjit Singh/0000-0001-7067-5239
dc.authorscopusid56599320800
dc.authorscopusid59375113300
dc.authorscopusid57490984800
dc.authorscopusid55437205600
dc.authorscopusid57201312799
dc.authorscopusid57215931407
dc.authorscopusid23028598900
dc.authorwosidAl-Bahrani, Mohammed/Aaj-5268-2021
dc.contributor.authorLiu, Zuozhi
dc.contributor.authorAli, Ali B. M.
dc.contributor.authorHussein, Rasha Abed
dc.contributor.authorSingh, Narinderjit Singh Sawaran
dc.contributor.authorAl-Bahrani, Mohammed
dc.contributor.authorAbdullaeva, Barno
dc.contributor.authorEsmaeili, Sh.
dc.date.accessioned2025-03-15T20:27:46Z
dc.date.available2025-03-15T20:27:46Z
dc.date.issued2025
dc.departmentOkan Universityen_US
dc.department-temp[Liu, Zuozhi] Guizhou Univ Finance & Econ, Sch Math & Stat, Guiyang 550025, Guizhou, Peoples R China; [Ali, Ali B. M.] Univ Warith Al Anbiyaa, Coll Engn, Air Conditioning Engn Dept, Karbala, Iraq; [Hussein, Rasha Abed] Al Manara Coll Med Sci, Dept Dent, Amarah, Maysan, Iraq; [Singh, Narinderjit Singh Sawaran] INTI Int Univ, Fac Data Sci & Informat Technol, Nilai 71800, Malaysia; [Al-Bahrani, Mohammed] Al Mustaqbal Univ, Dept Chem Engn & Petr Ind, Babylon 51001, Iraq; [Abdullaeva, Barno] Tashkent State Pedag Univ, Dept Math & Informat Technol, Sci Affairs, Tashkent, Uzbekistan; [Saeidlou, Salman] Canterbury Christ Church Univ, Sch Engn Technol & Design, Mech Mat Engn, Canterbury CT1 1QU, Kent, England; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Piri Reis Univ, Fac Sci & Letters, Istanbul, Turkiye; [Esmaeili, Sh.] Shabihsazan Ati Pars, Fast Comp Ctr, Tehran, Iranen_US
dc.descriptionSawaran Singh, Narinderjit Singh/0000-0001-7067-5239en_US
dc.description.abstractThis study looked at ANNs' ability to predict the rheological properties of MWCNT-ZNO / Oil SAE 50 nano lubricant. Five artificial intelligence algorithms-Group Method of Data Handling (GMDH), Extreme Gradient Boosting (XGBoost), Multivariate Adaptive Regression Splines (MARS), Support vector machine (SVM), and Multilayer Perceptron (MLP)-were employed in this work to forecast this nanofluid. The most optimum objective function (mu nf) as an output is the foundation of algorithms used in artificial intelligence. This capacity is developed so that the values predicted by ANN were more consistent with the laboratory numbers by combining GMDH with the metaheuristic approach. This combination enables the metaheuristic algorithm to optimize the evaluation indices and get the predicted data closer to the experimental data by using the GMDH activation parameters as input. For optimization, three metaheuristic algorithms are used, and the combination of GMDH and MOGWO produced the best results. Ultimately, the finest condition that could be achieved is found to have the following input data values: share rate (gamma), temperature (T), and solid volume fraction (phi): 0.0625 %, 50 degrees C, and 5499.6783 s-1 correspondingly.en_US
dc.description.sponsorshipScience and Technology Foundation of Guizhou Province [QKHJC-ZK[2022]YB024]; Innovative exploration and academic emerging Foundation of Guizhou University of Finance and Economics [2022XSXMB09]en_US
dc.description.sponsorshipThe Science and Technology Foundation of Guizhou Province (QKHJC-ZK[2022]YB024) and the Innovative exploration and academic emerging Foundation of Guizhou University of Finance and Economics (No. 2022XSXMB09) .en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citation0
dc.identifier.doi10.1016/j.icheatmasstransfer.2025.108749
dc.identifier.issn0735-1933
dc.identifier.issn1879-0178
dc.identifier.scopus2-s2.0-85218419239
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.icheatmasstransfer.2025.108749
dc.identifier.volume163en_US
dc.identifier.wosWOS:001435746500001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherPergamon-elsevier Science Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectNano-Lubricanten_US
dc.subjectMeta-Heuristicen_US
dc.subjectArtificial Intelligence Algorithmsen_US
dc.subjectMetaheuristic Algorithmen_US
dc.titleUsing Evolutionary Algorithms and Group Method of Data Handling Ann for Prediction of the Viscosity Mwcnt-Zno /Oil Sae 50 Nano-Lubricanten_US
dc.typeArticleen_US
dspace.entity.typePublication

Files