Super-massive objects in Yarman-Arik-Kholmetskii (YARK) gravitation theory

dc.authorid Yarman, Tolga/0000-0003-3209-2264
dc.authorid Yarman, Ozan U./0000-0001-9002-3326
dc.authorid arik, metin/0000-0001-9512-8581
dc.authorscopusid 6602787345
dc.authorscopusid 7005444397
dc.authorscopusid 7004016669
dc.authorscopusid 35331093400
dc.authorwosid Yarman, Tolga/Q-9753-2019
dc.authorwosid Yarman, Ozan U./A-3421-2016
dc.authorwosid arik, metin/T-4193-2019
dc.contributor.author Yarman, Tolga
dc.contributor.author Arik, Metin
dc.contributor.author Kholmetskii, Alexander
dc.contributor.author Yarman, Ozan
dc.date.accessioned 2024-05-25T11:16:49Z
dc.date.available 2024-05-25T11:16:49Z
dc.date.issued 2016
dc.department Okan University en_US
dc.department-temp [Yarman, Tolga] Okan Univ, Istanbul, Turkey; [Arik, Metin] Bogazici Univ, Istanbul, Turkey; [Kholmetskii, Alexander] Belarusian State Univ, 4 Nezavisimosti Ave, Minsk 220030, BELARUS; [Yarman, Ozan] Istanbul Univ, Istanbul, Turkey en_US
dc.description Yarman, Tolga/0000-0003-3209-2264; Yarman, Ozan U./0000-0001-9002-3326; arik, metin/0000-0001-9512-8581 en_US
dc.description.abstract We continue to analyze the implications of the gravitational framework of our theoretical approach, christened YARK (abbreviated from Yarman-Arik-Kholmetskii), with respect to super-massive celestial bodies. We emphasize in particular that a gravitating test particle in the presence of a ponderable mass must adhere to the law of energy conservation, which remarkably does not yield any singularity according to YARK. Even so, for a given spherically shaped extremely compact super-massive body, one can achieve a theoretical radius below which "light" of, say, the visible frequency range can indeed be trapped. Yet, such a radius comes out to be tens of times shorter than the threshold radius for black hole formation as established by the general theory of relativity (GTR). In accordance with our derivations, the minimal mass for a celestial object capable of recapturing emitted light in its environs - similar to textbook "intermediate class black holes" - is found to be about 10(3)M(S), where M-S stands for the mass of the Sun. For less massive celestial objects, the crucial radius that produces a "YARK black hole" (i.e., without singularity) corresponds to a higher density than the density of a baryon; and hence, such entities cannot apparently exist in nature. Black holes allowed therefore in our approach are not related, in any case, to the singularity conceptualization of GTR. As a consequence, we are able to present a resolution to the "black hole information paradox". The findings of YARK will be discussed hereinafter with regards to the foundations of observational cosmology. en_US
dc.identifier.citationcount 9
dc.identifier.doi 10.1139/cjp-2015-0689
dc.identifier.endpage 278 en_US
dc.identifier.issn 0008-4204
dc.identifier.issn 1208-6045
dc.identifier.issue 3 en_US
dc.identifier.scopus 2-s2.0-84960092056
dc.identifier.scopusquality Q3
dc.identifier.startpage 271 en_US
dc.identifier.uri https://doi.org/10.1139/cjp-2015-0689
dc.identifier.uri https://hdl.handle.net/20.500.14517/174
dc.identifier.volume 94 en_US
dc.identifier.wos WOS:000375946300005
dc.identifier.wosquality Q4
dc.language.iso en
dc.publisher Canadian Science Publishing en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 11
dc.subject black hole en_US
dc.subject singularity en_US
dc.subject event horizon en_US
dc.subject general theory of relativity en_US
dc.subject YARK theory en_US
dc.subject Yarman's Approach en_US
dc.title Super-massive objects in Yarman-Arik-Kholmetskii (YARK) gravitation theory en_US
dc.type Article en_US
dc.wos.citedbyCount 9

Files