ABSTRACT CAPACITY OF REGIONS AND COMPACT EMBEDDING WITH APPLICATIONS

dc.authorscopusid 6508234400
dc.authorwosid Shakhmurov, Veli/AAG-8871-2019
dc.contributor.author Shakhmurov, Veli
dc.date.accessioned 2024-05-25T11:21:28Z
dc.date.available 2024-05-25T11:21:28Z
dc.date.issued 2011
dc.department Okan University en_US
dc.department-temp Okan Univ, Dept Elect Engn & Commun, TR-34959 Istanbul, Turkey en_US
dc.description.abstract The weighted Sobolev-Lions type spaces W-p,gamma(l) (Omega; E) boolean AND L-p,L-gamma (Omega; E-0) are studied, where E-0, E are two Banach spaces and E-0 is continuously and densely embedded on E. A new concept of capacity of region Omega is an element of R-n in Wp,gamma(l)(Omega; E-0, E) is introduced. Several conditions in terms of capacity of region Omega and interpolations of E-0 and E are found such that ensure the continuity and compactness of embedding operators. In, particular, the most regular class of interpolation spaces E-alpha between E-0 and E, depending of alpha and l, are found such that mixed differential operators D-alpha are bounded and compact from W-p,gamma(l)(Omega; E-0, E) to E-alpha-valued L-p,L-gamma spaces. In applications, the maximal regularity for differential-operator equations with parameters are studied. en_US
dc.identifier.citationcount 1
dc.identifier.doi 10.1016/S0252-9602(11)60207-5
dc.identifier.endpage 67 en_US
dc.identifier.issn 0252-9602
dc.identifier.issn 1572-9087
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-78650976523
dc.identifier.scopusquality Q3
dc.identifier.startpage 49 en_US
dc.identifier.uri https://doi.org/10.1016/S0252-9602(11)60207-5
dc.identifier.uri https://hdl.handle.net/20.500.14517/565
dc.identifier.volume 31 en_US
dc.identifier.wos WOS:000287165300007
dc.identifier.wosquality Q2
dc.language.iso en
dc.publisher Springer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 1
dc.subject Capacity of regions en_US
dc.subject embedding theorems en_US
dc.subject Banach-valued function spaces en_US
dc.subject differential-operator equations en_US
dc.subject Semigroups of operators en_US
dc.subject operator-valued Fourier multipliers en_US
dc.subject interpolation of Banach spaces en_US
dc.title ABSTRACT CAPACITY OF REGIONS AND COMPACT EMBEDDING WITH APPLICATIONS en_US
dc.type Article en_US
dc.wos.citedbyCount 1
dspace.entity.type Publication

Files