ABSTRACT CAPACITY OF REGIONS AND COMPACT EMBEDDING WITH APPLICATIONS
dc.authorscopusid | 6508234400 | |
dc.authorwosid | Shakhmurov, Veli/AAG-8871-2019 | |
dc.contributor.author | Shakhmurov, Veli | |
dc.date.accessioned | 2024-05-25T11:21:28Z | |
dc.date.available | 2024-05-25T11:21:28Z | |
dc.date.issued | 2011 | |
dc.department | Okan University | en_US |
dc.department-temp | Okan Univ, Dept Elect Engn & Commun, TR-34959 Istanbul, Turkey | en_US |
dc.description.abstract | The weighted Sobolev-Lions type spaces W-p,gamma(l) (Omega; E) boolean AND L-p,L-gamma (Omega; E-0) are studied, where E-0, E are two Banach spaces and E-0 is continuously and densely embedded on E. A new concept of capacity of region Omega is an element of R-n in Wp,gamma(l)(Omega; E-0, E) is introduced. Several conditions in terms of capacity of region Omega and interpolations of E-0 and E are found such that ensure the continuity and compactness of embedding operators. In, particular, the most regular class of interpolation spaces E-alpha between E-0 and E, depending of alpha and l, are found such that mixed differential operators D-alpha are bounded and compact from W-p,gamma(l)(Omega; E-0, E) to E-alpha-valued L-p,L-gamma spaces. In applications, the maximal regularity for differential-operator equations with parameters are studied. | en_US |
dc.identifier.citation | 1 | |
dc.identifier.doi | 10.1016/S0252-9602(11)60207-5 | |
dc.identifier.endpage | 67 | en_US |
dc.identifier.issn | 0252-9602 | |
dc.identifier.issn | 1572-9087 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-78650976523 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.startpage | 49 | en_US |
dc.identifier.uri | https://doi.org/10.1016/S0252-9602(11)60207-5 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14517/565 | |
dc.identifier.volume | 31 | en_US |
dc.identifier.wos | WOS:000287165300007 | |
dc.identifier.wosquality | Q2 | |
dc.language.iso | en | |
dc.publisher | Springer | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Capacity of regions | en_US |
dc.subject | embedding theorems | en_US |
dc.subject | Banach-valued function spaces | en_US |
dc.subject | differential-operator equations | en_US |
dc.subject | Semigroups of operators | en_US |
dc.subject | operator-valued Fourier multipliers | en_US |
dc.subject | interpolation of Banach spaces | en_US |
dc.title | ABSTRACT CAPACITY OF REGIONS AND COMPACT EMBEDDING WITH APPLICATIONS | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |