Bifurcation analysis, chaotic structures and wave propagation for nonlinear system arising in oceanography

dc.authoridFaridi, Waqas Ali Faridi/0000-0003-0713-5365
dc.authoridAli, Karmina/0000-0002-3815-4457
dc.authorscopusid57188740155
dc.authorscopusid57225192008
dc.authorscopusid57193690600
dc.authorscopusid16318328300
dc.authorscopusid57204945844
dc.authorwosidFaridi, Waqas Ali Faridi/AGO-2432-2022
dc.contributor.authorAli, Karmina K.
dc.contributor.authorFaridi, Waqas Ali
dc.contributor.authorYusuf, Abdullahi
dc.contributor.authorAbd El-Rahman, Magda
dc.contributor.authorAli, Mohamed R.
dc.date.accessioned2024-05-25T11:27:57Z
dc.date.available2024-05-25T11:27:57Z
dc.date.issued2024
dc.departmentOkan Universityen_US
dc.department-temp[Ali, Karmina K.] Univ Zakho, Coll Sci, Dept Math, Zakho, Iraq; [Ali, Karmina K.] Knowledge Univ, Coll Sci, Dept Comp Sci, Erbil 44001, Iraq; [Faridi, Waqas Ali] Univ Management & Technol, Dept Math, Lahore, Pakistan; [Yusuf, Abdullahi] Near East Univ, Operat Res Ctr Healthcare, TRNC Mersin 10, TR-99138 Nicosia, Turkiye; [Yusuf, Abdullahi] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Yusuf, Abdullahi] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Abd El-Rahman, Magda] King Khalid Univ, Coll Sci, Dept Phys, Abha 61413, Saudi Arabia; [Ali, Mohamed R.] Benha Univ, Benha Fac Engn, Basic Engn Sci Dept, Banha, Egypt; [Ali, Mohamed R.] Future Univ Egypt, Fac Engn & Technol, New Cairo 11835, Egypten_US
dc.descriptionFaridi, Waqas Ali Faridi/0000-0003-0713-5365; Ali, Karmina/0000-0002-3815-4457en_US
dc.description.abstractThis study focuses on the variant Boussinesq equation, which is used to model waves in shallow water and electrical signals in telegraph lines based on tunnel diodes. The aim of this study is to find closed-form wave solutions using the extended direct algebraic method. By employing this method, a range of wave solutions with distinct shapes, including shock, mixed-complex solitary-shock, singular,mixed-singular, mixed trigonometric, periodic, mixed-shock singular, mixed-periodic, and mixed-hyperbolic solutions, are attained. To illustrate the propagation of selected exact solutions, graphical representations in 2D, contour, and 3D are provided with various parametric values. The equation is transformed into a planar dynamical structure through the Galilean transformation. By utilizing bifurcation theory, the potential phase portraits of nonlinear and super-nonlinear traveling wave solutions are investigated. The Hamiltonian function of the dynamical system of differential equations is established, revealing the system's conservative nature over time. The graphical representation of energy levels offers valuable insights and demonstrates that the model has closed-form solutions.en_US
dc.identifier.citation1
dc.identifier.doi10.1016/j.rinp.2024.107336
dc.identifier.issn2211-3797
dc.identifier.scopus2-s2.0-85182562643
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.rinp.2024.107336
dc.identifier.urihttps://hdl.handle.net/20.500.14517/1117
dc.identifier.volume57en_US
dc.identifier.wosWOS:001164227700001
dc.identifier.wosqualityQ1
dc.language.isoen
dc.publisherElsevieren_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectThe variant Boussinesqen_US
dc.subjectBifurcationen_US
dc.subjectPhase portraiten_US
dc.subjectHamiltonian functionen_US
dc.subjectChaos analysisen_US
dc.subjectSensitive analysisen_US
dc.titleBifurcation analysis, chaotic structures and wave propagation for nonlinear system arising in oceanographyen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files