Bifurcation analysis, chaotic structures and wave propagation for nonlinear system arising in oceanography
dc.authorid | Faridi, Waqas Ali Faridi/0000-0003-0713-5365 | |
dc.authorid | Ali, Karmina/0000-0002-3815-4457 | |
dc.authorscopusid | 57188740155 | |
dc.authorscopusid | 57225192008 | |
dc.authorscopusid | 57193690600 | |
dc.authorscopusid | 16318328300 | |
dc.authorscopusid | 57204945844 | |
dc.authorwosid | Faridi, Waqas Ali Faridi/AGO-2432-2022 | |
dc.contributor.author | Ali, Karmina K. | |
dc.contributor.author | Faridi, Waqas Ali | |
dc.contributor.author | Yusuf, Abdullahi | |
dc.contributor.author | Abd El-Rahman, Magda | |
dc.contributor.author | Ali, Mohamed R. | |
dc.date.accessioned | 2024-05-25T11:27:57Z | |
dc.date.available | 2024-05-25T11:27:57Z | |
dc.date.issued | 2024 | |
dc.department | Okan University | en_US |
dc.department-temp | [Ali, Karmina K.] Univ Zakho, Coll Sci, Dept Math, Zakho, Iraq; [Ali, Karmina K.] Knowledge Univ, Coll Sci, Dept Comp Sci, Erbil 44001, Iraq; [Faridi, Waqas Ali] Univ Management & Technol, Dept Math, Lahore, Pakistan; [Yusuf, Abdullahi] Near East Univ, Operat Res Ctr Healthcare, TRNC Mersin 10, TR-99138 Nicosia, Turkiye; [Yusuf, Abdullahi] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Yusuf, Abdullahi] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Abd El-Rahman, Magda] King Khalid Univ, Coll Sci, Dept Phys, Abha 61413, Saudi Arabia; [Ali, Mohamed R.] Benha Univ, Benha Fac Engn, Basic Engn Sci Dept, Banha, Egypt; [Ali, Mohamed R.] Future Univ Egypt, Fac Engn & Technol, New Cairo 11835, Egypt | en_US |
dc.description | Faridi, Waqas Ali Faridi/0000-0003-0713-5365; Ali, Karmina/0000-0002-3815-4457 | en_US |
dc.description.abstract | This study focuses on the variant Boussinesq equation, which is used to model waves in shallow water and electrical signals in telegraph lines based on tunnel diodes. The aim of this study is to find closed-form wave solutions using the extended direct algebraic method. By employing this method, a range of wave solutions with distinct shapes, including shock, mixed-complex solitary-shock, singular,mixed-singular, mixed trigonometric, periodic, mixed-shock singular, mixed-periodic, and mixed-hyperbolic solutions, are attained. To illustrate the propagation of selected exact solutions, graphical representations in 2D, contour, and 3D are provided with various parametric values. The equation is transformed into a planar dynamical structure through the Galilean transformation. By utilizing bifurcation theory, the potential phase portraits of nonlinear and super-nonlinear traveling wave solutions are investigated. The Hamiltonian function of the dynamical system of differential equations is established, revealing the system's conservative nature over time. The graphical representation of energy levels offers valuable insights and demonstrates that the model has closed-form solutions. | en_US |
dc.identifier.citation | 1 | |
dc.identifier.doi | 10.1016/j.rinp.2024.107336 | |
dc.identifier.issn | 2211-3797 | |
dc.identifier.scopus | 2-s2.0-85182562643 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://doi.org/10.1016/j.rinp.2024.107336 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14517/1117 | |
dc.identifier.volume | 57 | en_US |
dc.identifier.wos | WOS:001164227700001 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | |
dc.publisher | Elsevier | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | The variant Boussinesq | en_US |
dc.subject | Bifurcation | en_US |
dc.subject | Phase portrait | en_US |
dc.subject | Hamiltonian function | en_US |
dc.subject | Chaos analysis | en_US |
dc.subject | Sensitive analysis | en_US |
dc.title | Bifurcation analysis, chaotic structures and wave propagation for nonlinear system arising in oceanography | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |