On the Homomorphisms of the Lie Groups <i>SU</i>(2) and <i>S</i><SUP>3</SUP>

dc.authoridOzdemir, Fatma/0000-0003-1072-5964
dc.authorscopusid36880588900
dc.authorscopusid24067193900
dc.authorwosidOzdemir, Fatma/ABB-3965-2020
dc.contributor.authorÖzekes, Hasan
dc.contributor.authorOzekes, Hasan
dc.date.accessioned2024-05-25T11:24:32Z
dc.date.available2024-05-25T11:24:32Z
dc.date.issued2013
dc.departmentOkan Universityen_US
dc.department-temp[Ozdemir, Fatma] Istanbul Tech Univ, Fac Sci & Letters, Dept Math, TR-34469 Istanbul, Turkey; [Ozekes, Hasan] Okan Univ, Fac Sci & Letters, Dept Math, TR-34959 Istanbul, Turkeyen_US
dc.descriptionOzdemir, Fatma/0000-0003-1072-5964en_US
dc.description.abstractWe first construct all the homomorphisms from the Heisenberg group to the 3-sphere. Also, defining a topology on these homomorphisms, we regard the set of these homomorphisms as a topological space. Next, using the kernels of homomorphisms, we define an equivalence relation on this topological space. We finally show that the quotient space is a topological group which is isomorphic to S-1.en_US
dc.identifier.citation1
dc.identifier.doi10.1155/2013/645848
dc.identifier.issn1085-3375
dc.identifier.issn1687-0409
dc.identifier.scopus2-s2.0-84878727955
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1155/2013/645848
dc.identifier.urihttps://hdl.handle.net/20.500.14517/829
dc.identifier.wosWOS:000319193100001
dc.language.isoen
dc.publisherHindawi Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject[No Keyword Available]en_US
dc.titleOn the Homomorphisms of the Lie Groups <i>SU</i>(2) and <i>S</i><SUP>3</SUP>en_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication60dab588-82a7-4399-b4ee-62cfe38f2af7
relation.isAuthorOfPublication.latestForDiscovery60dab588-82a7-4399-b4ee-62cfe38f2af7

Files