On the Homomorphisms of the Lie Groups <i>SU</i>(2) and <i>S</i><SUP>3</SUP>
dc.authorid | Ozdemir, Fatma/0000-0003-1072-5964 | |
dc.authorscopusid | 36880588900 | |
dc.authorscopusid | 24067193900 | |
dc.authorwosid | Ozdemir, Fatma/ABB-3965-2020 | |
dc.contributor.author | Özekes, Hasan | |
dc.contributor.author | Ozekes, Hasan | |
dc.date.accessioned | 2024-05-25T11:24:32Z | |
dc.date.available | 2024-05-25T11:24:32Z | |
dc.date.issued | 2013 | |
dc.department | Okan University | en_US |
dc.department-temp | [Ozdemir, Fatma] Istanbul Tech Univ, Fac Sci & Letters, Dept Math, TR-34469 Istanbul, Turkey; [Ozekes, Hasan] Okan Univ, Fac Sci & Letters, Dept Math, TR-34959 Istanbul, Turkey | en_US |
dc.description | Ozdemir, Fatma/0000-0003-1072-5964 | en_US |
dc.description.abstract | We first construct all the homomorphisms from the Heisenberg group to the 3-sphere. Also, defining a topology on these homomorphisms, we regard the set of these homomorphisms as a topological space. Next, using the kernels of homomorphisms, we define an equivalence relation on this topological space. We finally show that the quotient space is a topological group which is isomorphic to S-1. | en_US |
dc.identifier.citation | 1 | |
dc.identifier.doi | 10.1155/2013/645848 | |
dc.identifier.issn | 1085-3375 | |
dc.identifier.issn | 1687-0409 | |
dc.identifier.scopus | 2-s2.0-84878727955 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.1155/2013/645848 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14517/829 | |
dc.identifier.wos | WOS:000319193100001 | |
dc.language.iso | en | |
dc.publisher | Hindawi Ltd | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | [No Keyword Available] | en_US |
dc.title | On the Homomorphisms of the Lie Groups <i>SU</i>(2) and <i>S</i><SUP>3</SUP> | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 60dab588-82a7-4399-b4ee-62cfe38f2af7 | |
relation.isAuthorOfPublication.latestForDiscovery | 60dab588-82a7-4399-b4ee-62cfe38f2af7 |