Yarman's approach predicts anomalous gravitational bending of high-energy gamma-quanta
No Thumbnail Available
Date
2016
Journal Title
Journal ISSN
Volume Title
Publisher
Canadian Science Publishing
Abstract
We predict anomalous gravitational bending of gamma rays using the gravitational framework of Yarman's approach, abbreviated hereinafter as "YARK" from the initials of the co-authors to designate their teamwork. In contrast to the metric layout of the general theory of relativity (GTR), YARK theory is founded directly on the energy conservation law pertaining to interaction between masses. Despite the fact that predictions made respectively by GTR and YARK regarding cornerstone astrophysical observations appear remarkably identical to each other, the philosophies behind them are irreconcilably different. To test which theory comes closer to the reality, one should propose ways to distinguish their success at the experimental level. Note that bending of light in GTR represents a purely metric effect, which cannot depend on the energy of photons, whereas YARK conceptually allows the deflection of photons across a gravitational environment contingent upon either their wave-like or corpuscular-like behavior. In the case of "wave-like propagation", which we deem particular to low-energy photons (including the visible range), YARK arrives at the same results as GTR; whereas for high-energy gamma-quanta, which we deem to signify "corpuscular-like propagation", the deflection in a gravitational field practically vanishes in YARK. Given this opportunity to test YARK theory against GTR, we discuss possible experimental setups relevant to the subject.
Description
arik, metin/0000-0001-9512-8581; Yarman, Tolga/0000-0003-3209-2264; Yarman, Ozan U./0000-0001-9002-3326
Keywords
gravitational bending of light, YARK gravitation theory, general theory of relativity
Turkish CoHE Thesis Center URL
Citation
8
WoS Q
Q4
Scopus Q
Q3
Source
Volume
94
Issue
6
Start Page
616
End Page
622