Bound States of Light Hydrogen-Like Atoms and the Possibility of Cold Nuclear Transformations

dc.authorid Yarman, Tolga/0000-0003-3209-2264
dc.authorscopusid 7004016669
dc.authorscopusid 6602787345
dc.authorwosid Yarman, Tolga/Q-9753-2019
dc.contributor.author Kholmetskii, A. L.
dc.contributor.author Yarman, T.
dc.date.accessioned 2024-05-25T11:19:27Z
dc.date.available 2024-05-25T11:19:27Z
dc.date.issued 2018
dc.department Okan University en_US
dc.department-temp [Kholmetskii, A. L.] Belarusian State Univ, Minsk, BELARUS; [Yarman, T.] Okan Univ Istanbul, Istanbul, Turkey; [Yarman, T.] Savronik, Eskisehir, Turkey en_US
dc.description Yarman, Tolga/0000-0003-3209-2264 en_US
dc.description.abstract We point out that numerous experimental facts dealing with the observation of nuclear transformations in a condensed matter at room temperature remain totally unexplained till date. In the present article we open up a principal way to understand such phenomena in the framework of pure bound field theory (PBFT) that we developed earlier (e.g. Kholmetskii AL. et al. Eur. Phys. J. Plus 2011;12633, Eur. Phys. J. Plus 2011;12635). In this theory, we explicitly take into account the non-radiating nature of the electromagnetic field of quantum bound particles in stationary states, which leads to the corresponding corrections of basic equations of atomic physics, with further elimination of the available subtle deviations between experimental and theoretical data in precise physics of light hydrogen-like atoms. In the present paper we have once more analysed the principal prediction of PBFT, which allows the existence of the second stationary energy state in the bound system "proton plus electron" (next to the usual hydrogen atoms). This new stationary state is characterised by the unusually small averaged radius of about 2 alpha(2)r(B) approximate to 5 fm (where r(B) is the Bohr radius, and a is the fine structure constant), and a huge (in the atomic scale) value of the binding energy about -255 keV. We named this bound system as the "neutronic hydrogen", because in many processes of its interaction with matter, it is practically indistinguishable from the neutron. The latter circumstance opens up the principal way to understand numerous puzzling facts of low-temperature nuclear synthesis. en_US
dc.identifier.citationcount 1
dc.identifier.doi 10.1515/zna-2018-0090
dc.identifier.endpage 577 en_US
dc.identifier.issn 0932-0784
dc.identifier.issn 1865-7109
dc.identifier.issue 7 en_US
dc.identifier.scopus 2-s2.0-85048094994
dc.identifier.scopusquality Q3
dc.identifier.startpage 565 en_US
dc.identifier.uri https://doi.org/10.1515/zna-2018-0090
dc.identifier.uri https://hdl.handle.net/20.500.14517/419
dc.identifier.volume 73 en_US
dc.identifier.wos WOS:000438318600001
dc.identifier.wosquality Q3
dc.language.iso en
dc.publisher Walter de Gruyter Gmbh en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 2
dc.subject Light Hydrogen-Like Atoms en_US
dc.subject Low-Temperature Nuclear Synthesis en_US
dc.subject Pure Bound Field Theory (PBFT) en_US
dc.title Bound States of Light Hydrogen-Like Atoms and the Possibility of Cold Nuclear Transformations en_US
dc.type Article en_US
dc.wos.citedbyCount 1
dspace.entity.type Publication

Files