Bound States of Light Hydrogen-Like Atoms and the Possibility of Cold Nuclear Transformations

dc.authoridYarman, Tolga/0000-0003-3209-2264
dc.authorscopusid7004016669
dc.authorscopusid6602787345
dc.authorwosidYarman, Tolga/Q-9753-2019
dc.contributor.authorKholmetskii, A. L.
dc.contributor.authorYarman, T.
dc.contributor.otherEnerji Sistemleri Mühendisliği / Energy Systems Engineering
dc.date.accessioned2024-05-25T11:19:27Z
dc.date.available2024-05-25T11:19:27Z
dc.date.issued2018
dc.departmentOkan Universityen_US
dc.department-temp[Kholmetskii, A. L.] Belarusian State Univ, Minsk, BELARUS; [Yarman, T.] Okan Univ Istanbul, Istanbul, Turkey; [Yarman, T.] Savronik, Eskisehir, Turkeyen_US
dc.descriptionYarman, Tolga/0000-0003-3209-2264en_US
dc.description.abstractWe point out that numerous experimental facts dealing with the observation of nuclear transformations in a condensed matter at room temperature remain totally unexplained till date. In the present article we open up a principal way to understand such phenomena in the framework of pure bound field theory (PBFT) that we developed earlier (e.g. Kholmetskii AL. et al. Eur. Phys. J. Plus 2011;12633, Eur. Phys. J. Plus 2011;12635). In this theory, we explicitly take into account the non-radiating nature of the electromagnetic field of quantum bound particles in stationary states, which leads to the corresponding corrections of basic equations of atomic physics, with further elimination of the available subtle deviations between experimental and theoretical data in precise physics of light hydrogen-like atoms. In the present paper we have once more analysed the principal prediction of PBFT, which allows the existence of the second stationary energy state in the bound system "proton plus electron" (next to the usual hydrogen atoms). This new stationary state is characterised by the unusually small averaged radius of about 2 alpha(2)r(B) approximate to 5 fm (where r(B) is the Bohr radius, and a is the fine structure constant), and a huge (in the atomic scale) value of the binding energy about -255 keV. We named this bound system as the "neutronic hydrogen", because in many processes of its interaction with matter, it is practically indistinguishable from the neutron. The latter circumstance opens up the principal way to understand numerous puzzling facts of low-temperature nuclear synthesis.en_US
dc.identifier.citation1
dc.identifier.doi10.1515/zna-2018-0090
dc.identifier.endpage577en_US
dc.identifier.issn0932-0784
dc.identifier.issn1865-7109
dc.identifier.issue7en_US
dc.identifier.scopus2-s2.0-85048094994
dc.identifier.scopusqualityQ3
dc.identifier.startpage565en_US
dc.identifier.urihttps://doi.org/10.1515/zna-2018-0090
dc.identifier.urihttps://hdl.handle.net/20.500.14517/419
dc.identifier.volume73en_US
dc.identifier.wosWOS:000438318600001
dc.identifier.wosqualityQ3
dc.institutionauthorYarman, Nuh Tolga
dc.language.isoen
dc.publisherWalter de Gruyter Gmbhen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectLight Hydrogen-Like Atomsen_US
dc.subjectLow-Temperature Nuclear Synthesisen_US
dc.subjectPure Bound Field Theory (PBFT)en_US
dc.titleBound States of Light Hydrogen-Like Atoms and the Possibility of Cold Nuclear Transformationsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicatione8750528-f58f-486e-9a0a-eb4ab45fb468
relation.isAuthorOfPublication.latestForDiscoverye8750528-f58f-486e-9a0a-eb4ab45fb468
relation.isOrgUnitOfPublicatione2c8b290-2656-4ea1-8e8f-954383d6b397
relation.isOrgUnitOfPublication.latestForDiscoverye2c8b290-2656-4ea1-8e8f-954383d6b397

Files