Prediction of the thermal behavior of multi-walled carbon nanotubes-CuO-CeO2 (20-40-40)/water hybrid nanofluid using different types of regressors and evolutionary algorithms for designing the best artificial neural network modeling

dc.authoridRostamzadeh-Renani, Mohammad/0000-0003-4744-5499
dc.authoridBaghoolizadeh, Mohammadreza/0000-0002-3703-0866
dc.authorscopusid57216950040
dc.authorscopusid57338920800
dc.authorscopusid22136195900
dc.authorscopusid56388625300
dc.authorscopusid57216954326
dc.authorscopusid57449950600
dc.authorscopusid57449950600
dc.contributor.authorRostamzadeh-Renani, Reza
dc.contributor.authorSalahshour, Soheıl
dc.contributor.authorSajadi, S. Mohammad
dc.contributor.authorPirmoradian, Mostafa
dc.contributor.authorRostamzadeh-Renani, Mohammad
dc.contributor.authorBaghaei, Sh.
dc.contributor.authorSalahshour, Soheil
dc.date.accessioned2024-05-25T11:38:52Z
dc.date.available2024-05-25T11:38:52Z
dc.date.issued2023
dc.departmentOkan Universityen_US
dc.department-temp[Rostamzadeh-Renani, Reza; Rostamzadeh-Renani, Mohammad] Energy Dept, Politecn Milano, Via Lambruschini 4, I-20156 Milan, Italy; [Baghoolizadeh, Mohammadreza] Shahrekord Univ, Dept Mech Engn, Shahrekord 8818634141, Iran; [Sajadi, S. Mohammad] Cihan Univ Erbil, Dept Nutr, Erbil, Kurdistan Regio, Iraq; [Pirmoradian, Mostafa; Baghaei, Sh.] Islamic Azad Univ, Dept Mech Engn, Khomeinishahr Branch, Khomeinishahr, Iran; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Dept Genet & Bioengn, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanonen_US
dc.descriptionRostamzadeh-Renani, Mohammad/0000-0003-4744-5499; Baghoolizadeh, Mohammadreza/0000-0002-3703-0866en_US
dc.description.abstractFor conducting an analysis of the experimental data, it is imperative to establish a mathematical correlation between the input and output variables. This entails executing a curve fitting or regression procedure on the data, for which numerous methodologies exist. Within the scope of present investigation, the design variables encompass the solid volume fraction (phi) and temperature. Thermal conductivity (TC) of MWCNT-CuO-CeO2 (20-40-40)/water hybrid nanofluid (HNF) is also the objective function. Ten different types of regressors are utilized for regression operations which are Multiple Linear Regression (MLR), Decision Tree (D-Tree), Multi-Layer Perceptron (MLP), Support Vector Machine (SVM), Extreme Learning Machine (ELM), Radial Basis Function (RBF), Adaptive Neuro-Fuzzy Inference System (ANFIS), Gaussian Process Regression (GPR), Multivariate Polynomial Regression (MPR) and Group Method of Data Handling (GMDH). Once the governing equations linking the design variables and the objective functions have been established, these equations can be employed to forecast the simulation data. By substituting the above input values into the equations, we can calculate the corresponding output values for the TC of the HNF. The results obtained from the MPR algorithm are compared to the experimental data. For the GPR, MLR, D-Tree, ELM, MPR, MLP, RBF, SVM, ANFIS, and GMDH algorithms, the maximum margin of error is found to be 0.031, 0.02579, 0.028946, 0.033889, 0.01568, 0.02515, 0.03485, 0.03, 0.0385, and 0.0178, respectively. Moreover, the kernel density estimation diagram indicates the gap be-tween experimental data and data predicted by regression algorithms. Finally, it is evident that the MPR algorithm demonstrates to have a reduced residual dispersion, with the residuals approaching zero.en_US
dc.identifier.citation5
dc.identifier.doi10.1016/j.aej.2023.10.059
dc.identifier.endpage203en_US
dc.identifier.issn1110-0168
dc.identifier.issn2090-2670
dc.identifier.scopus2-s2.0-85176505294
dc.identifier.scopusqualityQ1
dc.identifier.startpage184en_US
dc.identifier.urihttps://doi.org/10.1016/j.aej.2023.10.059
dc.identifier.urihttps://hdl.handle.net/20.500.14517/1300
dc.identifier.volume84en_US
dc.identifier.wosWOS:001111994500001
dc.identifier.wosqualityQ1
dc.institutionauthorSalahshour S.
dc.language.isoen
dc.publisherElsevieren_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectThermal behavioren_US
dc.subjectHybrid nanofluiden_US
dc.subjectRegressorsen_US
dc.subjectEvolutionary algorithmsen_US
dc.subjectArtificial neural network modelingen_US
dc.titlePrediction of the thermal behavior of multi-walled carbon nanotubes-CuO-CeO2 (20-40-40)/water hybrid nanofluid using different types of regressors and evolutionary algorithms for designing the best artificial neural network modelingen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf5ba517c-75fb-4260-af62-01c5f5912f3d
relation.isAuthorOfPublication.latestForDiscoveryf5ba517c-75fb-4260-af62-01c5f5912f3d

Files