Prediction of the thermal behavior of multi-walled carbon nanotubes-CuO-CeO2 (20-40-40)/water hybrid nanofluid using different types of regressors and evolutionary algorithms for designing the best artificial neural network modeling

dc.authorid Rostamzadeh-Renani, Mohammad/0000-0003-4744-5499
dc.authorid Baghoolizadeh, Mohammadreza/0000-0002-3703-0866
dc.authorscopusid 57216950040
dc.authorscopusid 57338920800
dc.authorscopusid 22136195900
dc.authorscopusid 56388625300
dc.authorscopusid 57216954326
dc.authorscopusid 57449950600
dc.authorscopusid 57449950600
dc.contributor.author Rostamzadeh-Renani, Reza
dc.contributor.author Baghoolizadeh, Mohammadreza
dc.contributor.author Sajadi, S. Mohammad
dc.contributor.author Pirmoradian, Mostafa
dc.contributor.author Rostamzadeh-Renani, Mohammad
dc.contributor.author Baghaei, Sh.
dc.contributor.author Salahshour, Soheil
dc.date.accessioned 2024-05-25T11:38:52Z
dc.date.available 2024-05-25T11:38:52Z
dc.date.issued 2023
dc.department Okan University en_US
dc.department-temp [Rostamzadeh-Renani, Reza; Rostamzadeh-Renani, Mohammad] Energy Dept, Politecn Milano, Via Lambruschini 4, I-20156 Milan, Italy; [Baghoolizadeh, Mohammadreza] Shahrekord Univ, Dept Mech Engn, Shahrekord 8818634141, Iran; [Sajadi, S. Mohammad] Cihan Univ Erbil, Dept Nutr, Erbil, Kurdistan Regio, Iraq; [Pirmoradian, Mostafa; Baghaei, Sh.] Islamic Azad Univ, Dept Mech Engn, Khomeinishahr Branch, Khomeinishahr, Iran; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Dept Genet & Bioengn, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon en_US
dc.description Rostamzadeh-Renani, Mohammad/0000-0003-4744-5499; Baghoolizadeh, Mohammadreza/0000-0002-3703-0866 en_US
dc.description.abstract For conducting an analysis of the experimental data, it is imperative to establish a mathematical correlation between the input and output variables. This entails executing a curve fitting or regression procedure on the data, for which numerous methodologies exist. Within the scope of present investigation, the design variables encompass the solid volume fraction (phi) and temperature. Thermal conductivity (TC) of MWCNT-CuO-CeO2 (20-40-40)/water hybrid nanofluid (HNF) is also the objective function. Ten different types of regressors are utilized for regression operations which are Multiple Linear Regression (MLR), Decision Tree (D-Tree), Multi-Layer Perceptron (MLP), Support Vector Machine (SVM), Extreme Learning Machine (ELM), Radial Basis Function (RBF), Adaptive Neuro-Fuzzy Inference System (ANFIS), Gaussian Process Regression (GPR), Multivariate Polynomial Regression (MPR) and Group Method of Data Handling (GMDH). Once the governing equations linking the design variables and the objective functions have been established, these equations can be employed to forecast the simulation data. By substituting the above input values into the equations, we can calculate the corresponding output values for the TC of the HNF. The results obtained from the MPR algorithm are compared to the experimental data. For the GPR, MLR, D-Tree, ELM, MPR, MLP, RBF, SVM, ANFIS, and GMDH algorithms, the maximum margin of error is found to be 0.031, 0.02579, 0.028946, 0.033889, 0.01568, 0.02515, 0.03485, 0.03, 0.0385, and 0.0178, respectively. Moreover, the kernel density estimation diagram indicates the gap be-tween experimental data and data predicted by regression algorithms. Finally, it is evident that the MPR algorithm demonstrates to have a reduced residual dispersion, with the residuals approaching zero. en_US
dc.identifier.citationcount 5
dc.identifier.doi 10.1016/j.aej.2023.10.059
dc.identifier.endpage 203 en_US
dc.identifier.issn 1110-0168
dc.identifier.issn 2090-2670
dc.identifier.scopus 2-s2.0-85176505294
dc.identifier.scopusquality Q1
dc.identifier.startpage 184 en_US
dc.identifier.uri https://doi.org/10.1016/j.aej.2023.10.059
dc.identifier.uri https://hdl.handle.net/20.500.14517/1300
dc.identifier.volume 84 en_US
dc.identifier.wos WOS:001111994500001
dc.identifier.wosquality Q1
dc.institutionauthor Salahshour S.
dc.language.iso en
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 15
dc.subject Thermal behavior en_US
dc.subject Hybrid nanofluid en_US
dc.subject Regressors en_US
dc.subject Evolutionary algorithms en_US
dc.subject Artificial neural network modeling en_US
dc.title Prediction of the thermal behavior of multi-walled carbon nanotubes-CuO-CeO2 (20-40-40)/water hybrid nanofluid using different types of regressors and evolutionary algorithms for designing the best artificial neural network modeling en_US
dc.type Article en_US
dc.wos.citedbyCount 12

Files